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1 Consider continuous data y in D dimensions. We want to use a Factor Analysis
model with a scalar (1-dimensional) hidden factor, x.

(a) Whatis the likelihood function, and how many free parameters does the model
have?

ANSWER: p(y|A,¥) = A ((},,AAT +Y¥). There are 2D free parameters.

(b) In the EM algorithm, we work with a lower bound functional % to the log
likelihood. Write down the % functional.

ANSWER: Z(8,9) = [ g(x)log( B%(%@ax

(c¢) Using the fact that the KL divergence between two distributions is non-
negative, show that .% is a lower bound on the log likelihood.

ANSWER: Write & as
plxly, 8)p(y|0)

q(x)

F(8,q

N

S

/ ;
= [ g 108

(d) Find an expression for the posterior distribution of the hidden variable.
ANSWER: The un-normalized posterior is the likelihood times the prior,

Py}, 0)p(x)
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2  Bayesian inference in models for machine learning requires evaluation of integrals.
If these are intractable, one sometimes resorts to Markov Chain Monte Carlo (MCMC)

methods.

(a) State the Metropolis algorithm to sample from p(x), using an isotropic (i.e.
with covariance 621 ) Gaussian proposal distribution, centered on the current state. [25%]

ANSWER: The current state is x. lterate the following:
spropose a candidate X* from A (x, 021 ).

saccept the proposed state X* if p(x*)/p(%) > u, where u is sampled uniformly

in [0;1], otherwise retain the old state.

(b) The efficiency of Metropolis sampling depends on the width of the proposal
distribution. Explain what happens if this width is too narrow, and if it is too wide. [25%]

ANSWER: Toc narrow: slow exploration of p. Too wide: very low acceptance

raie.

(c) Inimportance sampling, one draws random samples from a distribution g(x),
which is different from the target distribution p(x) of interest. State the importance
sampling algorithm for finding the average of a function f(x) with respect to p(x). [25%]

- (s plad) .
ANSWER: Use %Zz f kx([)}pgx(;)))’ where x\') are samples drawn from g(x).
g(xl';

(d) You use an importance sampler to evaluate an integral where the target
distribution is heavy tailed; the proposal distribution g is Gaussian. Why may the
importance sampler be slow under these conditions? [25%]

ANSWER: The importance weights may have occasional, very large values; the

variance of the estimate will be large.
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3 Two different parametric models have been trained using Maximum Likelihood on
the same training data. One model has a much lower training error than the other.

(@) Which model is best?

ANSWER: It is not possible to tell from the training error alone.

(b) In an unsupervised learning task, the likelihood is p(y|@), where 0 are the
parameters. Write down the marginal likelihood.

ANSWER: Marginal likelihood: p(y) = [ p(y|6)p(8)d0.

(c) Approximate Bayesian inference is undertaken in a mixture model with two
components. The approximation to the posterior ditribution captures only one of two
symmetric modes, spaced widely apart in parameter space. How could you adjust the
value of the estimated marginal likelihood to compensate for this failure?

ANSWER: Double the value of the estimate.

(d) Prove that the marginal likelihood is upper bounded by the maximum
likelihood.
ANSWER:

/p(y!)p(@d@ < J/ p(y16nr)p(0)d8 = p(y 6*ML)/" p(6)d6 = p(y|6mL)-
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4  Letxy,...,x5 be binary variables (i.e. x; € {0,1}) and

1
P(x1,...,X5) = - explaixy +xpx3%x4 — 2245}

where Z is a normalisation constant.

(a) Draw the factor graph for p(x,...,xs). Is it singly connected? [30%]
ANSWER: Picture goes here. Yes.

(b) For each of the following marginal and conditional independence statements,
state whether it is true or false for p(xq,...,xs5):

@®  x1llxs
(i) xqllxs
(i) xq-Llxg|xs
iv)  xpLloglxy
(v) xpllxslxz3 =0
[30%]
ANSWER: No. No. No. Yes. Yes.

(c) What is the message that the x;—x; factor sends to x,? [40%]

ANSWER: Let f1, refer to the factor between x; and x», then

where fLy ¢, (x1) = 1.
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5 Consider Bellman’s optimality equation:

V¥(s) = max R(s,a)+ }’Z/P(s’|s,a)V* (s")

§

where s and s represent states, a represents actions, and V*(s) is the optimal value of
state s.

(a) Give an interpretation for R(s,a), v and P(s'|s,a). [30%]
ANSWER: R(s,a) is the immediate reward obtained in state s after taking action a,
y is the dicount factor for future rewards, and P(s'|s,a) is the probablity of transitioning

from state s to state s’ after taking action a.

(b) Describe the value iteration algorithm for solving for V*(s). [30%]
ANSWER: Initialise the values arbitrarily (e.g. V*(s) = 0) and iterate the above

equation for each state until convergence.

(c) Assume a Markov Decision Process (MDP) with two states { 1,2}, two actions
(stay and jump), ¥ = 1/2 and the following settings for the MDP:

P(s =1]s=1,a=stay) = 1
P(s =2s=2,a=stay) = 1
P(s' =2|s = 1,a = jump) 1
P(s =1s=2,a=jump) = 1
R(l,stay) = 1/2 R(1,jump) =0
R(2,stay)y = 2 R(2, jump) = 1.
Solve for the optimal value function. [40%]

ANSWER: For each state we max over the two actions (stay and jump):

Q
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