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1.

a,) i. If f has a zero of order k at 2z, then it can be written as f = (z — 29)*g(2) with
g(2) # 0 and analytic near z;. Therefore f'(z) = k(z — 20)*~1g(2) + (2 — 20)*g'(2),

hence
fE kL g) o
) " r—n e (30%)

which has a simple pole at zp with residue k because g’/ g is analytic near 2.

In this case, f can be written as f(2) = g(2)/(z — 2p)™, where again g(z) # 0 and
analytic near zg. Hence

(=X

ii.

(30%)

0wy . _—mg(2) 9'(2)
f{z) = (z—20)"F1 " (Z<2)™
fiz) _ —m  g'(2)

= +
f(z) z—20 g(z)
which has a simple pole at z; with residue —m. [:60%‘]

(,—) The residue theorem says that the integral of a function along a closed contour on
- which there are no poles is equal to 2xi x (sum of residues of poles inside the con-
tour). According to i. and ii. above, the sum of the residues of the poles of f//f

inside S are Ei z;ik; — EJ. wjm; where the 7 sum runs over the zeros of f at z =

z;and the j sum runs over the poles of f at z=w;. Hence

1 2 4, — Ko s
57 | Wdz = zi:z,k, Zj:wjm, _ .
= N—P L2-54]

C) . The polynomial has no poles and two zeros at z=+1/2, so using iii), we just need
~ to integrate f’/f on the unit circle. The derivative is f’(z) = 8z. The two poles of

f'/f are at z=:+1/2. The integral in ) is
(

8z
j{ 21 ldz

The residues at the poles are: lim,,1/2 :1(:-8-—11(/12.)(;/-{-;)1/2')_ =1 and similarly for the

other pole, thus the sum of the residues is 2 x 24, corresponding to the 2 zeros of o
f. [15% |

OL) Use the substitution z = z and will integrate on a contour that consists of the real
axis and a very large semicircle. The complex integral on the real axis is

w2 __ ,—inz
r=2 / e e )

2 1—-22
1 2ei72 1 [ ze—im2 d
T 20 1-22 Z_E_/ -2 %
We want to use Jordan’s Lemma, so complete contours for the two integrals
slightly differently: for the first integral, we complete the contour in the upper half
plane, for the second in the lower half plane.
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Jordan’s Lemma states that if a is real and a >0

/e"“g(z)dz — 0 asRooo...
r

where I is a semicircle of radius R in the upper half plane and g(z) — 0 as 2 — oo.
If a < 0, then the integral vanishes on a very large semicircle in the lower half

plane.

Hence the integrals vanish on both semicircles, and the real integral is equal to the
2nt x (sum of the residues). Note that the poles of the integrand are at z==+1, i.e.
on the contour, so only half of the residue contributes. Not also that the two com-

plex integrals are equal. The residues are

lim (z£1)ze™ 1
e—t1 (1+2)(1~2) ~ 2

. . 2mif1 1
so the real integral is T( 5—+-2—) =m
Convert the integral to a complex one, with z = ¢!* (with dz = izdz) and integrate

on the unit semicircle in the upper half plane. Since the original integral is an even
function of x, we can extend the complex integral to the full unit circle and divide

the answer by 2. So

/ m dz _ 1 }{ dz
o 14bcos?z 2 m
1

_ ?{ zdz
2 b b b
2 ZZ4+(E+1)22+Z

Using the quadratic formula in 22 for the denominator, it has four roots, satisfying
22=—1+ %( ++/b+1 — 1), with two of them (corresponding to the + sign) inside
the unit circle. Let us label these roots with z = =+ iv, with the other roots at z =
3 éy_. The residues at the poles inside the unit circle are

] (z £ivq)= 2/
it T2 V(24 A2) | A= 72
T+ (22 + 732+ 72) -7

Now 72 — 43 = -g-\/b+ 1, so 277 x the sum of the two residues is b’:_ =




p3 4M13 2008

(233 (a) If the design is “fully stressed’ then the cable tensile stress 0 =0, (the design strength).
Therefore the cable cross-sectional area

A=—
Oy

The volume of steel in each cable span is

2 2
V=As=I—s= WL L 1+8d2
Oy 8d(7d 31

. o wD 2
hence the cost of cable in each span is = s 1+ %2— Ceable
o 8doy 3L

If there are n spans then n+1 towers are required. Treating » as a continuous variable the total cost

of the bridge is:

w3 84>
n 8d0’d [1 + E{] Ccable +(n+ 1) Ctower

b wl® 8d* b
= ngo-d 1+3? Ceable Z+l Ctower

bW [ I 8 ( b ] -
= ZCeable | Z 4 24 [+ Crper | —+1 15%
8o, | d 3 tower \ L [15%]

f:

(b) Substituting the values given
160 2
10,000 x 160,000 x 100,000 [L 8 J+6'532X106(10,200+1]

= —+—d
s 8 x 1000 x 10° d 3

2
~20000{ £ +34 +6.532x106(10,000+1J
d 3 T

2 6
=104[2L ,16d_ 6532x10 +653.2] (%)
d 3 L
Thus
T
of afJT A 4L 6532x10°  2I% 16 o
4 (aL od d I? a3 ( o>
Pf  f 4 2x6532x10° 4L
2 3 73 o
_ aZL azéad _ 104 @ L d2 QO /o>
*f ¥ 4L ar

odoL  ad?® 2 d°
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Starting at L = 2000 m and d = 100 m:

xo =(2000,100)" f(x)=£ 844.5 million
V/(x9)=105(0.7837 —7.947) and H(xp)= [‘i;ggg 1"6’:)‘2)%%]
dg = - Vf(x9)=10°(-0.7837 7.947) GO%>
_ —dy" Vf(xe)
°" 4,74,
0.7837% +7.947%

416.33 8000 |( —0.7837
-8000 160000 [{ 7.947

(-0.7837 7.947)[

- 63.769 = 6.249x107° (107
63902 x—0.7837+ 1277790 x 7.947
Xy = X0 + ogdg = (2000~ 49, 100+49.7) =(1995.1, 1497 (5 %)

Check: f(x;)=£ 579.0 million and this is an improved design [50%]

(c) For minimum Vf =0
So from expression for Vf

413 =6.532%10%d and 617 = 164>

Thus 41> = 6.532x10° x \EL

Hence L =1000m

and d = EL =612.37m

196.0 -106.7
-106.7 1742
0 and so is its determinant [22758]). Thus this solution is 2 minimum.

Check: /= £ 137.2 million for these values of L and d.

For these values H =[ ] which is clearly positive definite (top left corner entry is >

[20%]

(d) The convergence rate of the steepest descent method will be poor on this objective function
which is far from quadratic in form. Thus it is not surprising that in one iteration it makes only

limited progress towards the optimum.

The cost model is not realistic because in reality the cost of the towers will increase
significantly with increasing height d. Towers 600 m higher than a deck of 1000 m span do not
make any sense. The Humber Bridge has a span of ~1400 m and its towers are only ~130 m higher

than the deck.
[15%]
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<+ 9-3)sxi107 = [RF+ 7-5x107
= RA+ O.OIS R+ 5-625%X10 "

= 375 X 10"

O-0O05 m

_q‘q! O'OIS gcm
-:u QC =

l
T, o = [__o-oS”—+ 7-szo’3j ‘2

Ol m ((O"’é>

Hence (see rw_xv]-(:a}ge)
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oL = 2WLR, — 2pM, 05 TR _L-;-_M,_Trif Ro = O (D
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() = ZTI‘L&—'H_M—WBE:‘QO = O
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Re sSah=fy Q, and do not violake g,




- p® 173
200%
H(c) continrwod
Cose (V) M >0, ML > O
Q) = 'Qo = O or
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