ENGINEERING TRIPOS PART IIB

Thursday 1 May 2008  2.30to 4

Module 4A9

MOLECULAR THERMODYNAMICS
Answer not more than three questions.
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1 (a) Use a ‘mean free path’ kinetic theory model to show that the thermal
conductivity k of a monatomic perfect gas can be expressed as

pChc,

k=pr=

2

where £ is a constant, p is the gas density, C is the mean molecular speed, A is the
mean free path and ¢, is the specific heat capacity at constant volume. Obtain a value for
the constant £ and explain qualitatively why it is substantially different from the value
B =15/2 obtained from more detailed solutions of the Boltzmann equation.

It may be assumed without proof that the ‘one-sided’ molecular mass incident on
a surface of unit area per unit time is given by pC / 4,

(b) Explain Eucken’s theory of how the above expression for the thermal
conductivity can be modified so that it provides a reasonable approximation for
diatomic and polyatomic gases.

(¢) Figure 1 shows a simple model for the temperature distribution in a
stationary monatomic perfect gas near a solid wall. At distance y = A from the wall the
gas temperature is T, and the temperature gradient is d7/dy. Extrapolating this
temperature gradient down to the wall at y = 0 gives an effective gas temperature g
which may be different from the solid wall temperature 7, (i.e., there may be a
‘temperature jump’ at the wall).

Develop a simple kinetic model for energy transport in the free-molecule (y < A)
and continuum (y > 1) regions, and match the energy fluxes to obtain a relation between
the wall temperature jump (7p — T) and dT/dy. For simplicity, assume that molecules
reflected from the wall are fully accommodated to the wall temperature 7.

(cont.
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2 (a) For a stationary gas, the Maxwell-Boltzmann molecular speed distribution
function g.(C) is
4z C? C?
g.(C) = —eXp[ ] :
V4

where C is the molecular speed, R is the gas constant per unit mass and 7 is the
temperature. Find an expression for the mean molecular speed C and show that its value
for nitrogen at 300 K is about 477 ms™.

You may use without proof the integral,

Jx3 exp(—xz)dx = 1
0 2

(b) An experiment to investigate gas leakage due to small pressure differences
in a vacuum system consists of two vessels A and B separated by a very thin, rigid
partition. Both vessels contain nitrogen, the pressure in vessel A being p, = 5000 Pa and
that in vessel B being pg = 4800 Pa. The temperature of the gas in both vessels is 300 K.
The partition contains a large number of small circular holes each of diameter D through
which leakage can occur, the total flow cross-sectional area being 1 mm?. The dynamic
viscosity of nitrogen at 300 K is 18.3x10 kg m™ 57,

(i) If D=0.1 pm calculate the Knudsen number based on D to confirm
that the flow is in the free-molecule regime. Using a suitable theory estimate
the total leakage mass flowrate in g hr™.

(i) If D =50 pum calculate the Knudsen number based on D to confirm
that the flow is in the continuum regime. Assuming that the flow is inviscid,
estimate the total leakage mass flowrate in g hr .

(iii) Sketch a graph showing how the leakage mass flowrate might vary
with the logarithm of the Knudsen number (for fixed pa and pg).

It may be assumed without proof that the ‘one-sided’ molecular mass incident on
a surface of unit area per unit time is given by pC /4 where pis the gas density. It may
also be assumed that the dynamic viscosity x is given by u=pCA / 2 where A is the
mean free path of a gas molecule.
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3 (a) For a particle of mass m, the time-independent form of the Schrédinger
wave equation may be written as

8mlm

Viy + E (e-g,)y=0.
: . o iy [10%]
Explain what each of y, € and g, represent, giving a quantitative definition for .
(b) A particle possessing only translational kinetic energy is confined to a
field-free cubic box of side a. By writing y =, (%, )y, (x,)w,(x,) show that the above
equation reduces to the three ordinary differential equations:
d*y, (2mp Y
—=+| —+| y,;=0 i=12,3
dx? [ h Vi
where p; is the particle’s momentum in the direction x; . Hence show that the particle’s
momentum in each of the three directions is quantised and that
h2 2 2 2
€= Py~ (n, +n, +n3> .
What is the physical significance of the numbers #;, #; and n3 ? [50%]
(c) 1 litre of helium is contained within a cubic container at 1 bar and 500 K.
Calculate the number of energy states available to molecules that have speeds in the
range zero to the RMS molecular speed. Calculate also the total number of molecules in
the container and comment on the comparison between the two results. [40%]
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4 (a)  Three yellow dice and two pink dice are thrown together repeatedly.
Each time the total score on all five dice is 27, the sum of the scores on the two pink
dice is recorded. By drawing up a table, or otherwise, determine the relative frequency
of the possible values of P, where P is the sum of the scores on the pink dice. Comment
briefly on the analogy with the canonical ensemble.

(b) Figure 2 shows a closed system of fixed volume in thermal contact with
an infinite thermal reservoir at temperature 7, . The system has mass m and is composed
of a material that has a constant specific heat capacity at constant volume of ¢, .

(1) Derive an expression for the increase in entropy of the system
when its temperature is increased from 7, to T =7 +AT . Your
expression should be in terms of T, , AT, m and ¢, .

(i1) Determine also the corresponding reduction in entropy of the
reservoir, assuming the system and reservoir together constitute an
isolated system. Hence, if AT <7, , show that the total change in
entropy for the reservoir plus system is given approximately by:

AS ~~imc (AT/T) .
(ii1) Use the Boltzmann relation to determine the ratio of the

probability of the system being at temperature T to that of it being at
temperature 7, . Sketch this ratio as a function of 7.

(1v) If m=0.001kg, ¢, =1000Tkg" K and 7, =500 K, estimate
the RMS temperature fluctuations of the system.

(cont.
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