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Module 4A12

TURBULENCE

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments: 4412 Data Card
(i) Vortex Dynamics (I page)
(ii) Turbulence (2 pages)
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1 (a) State Helmholtz’s two laws of vortex dynamics. Prove the first law by
noting that a short line element in the fluid, § 1, which always consists of the same fluid
particles, evolves according to

D
2, 6D=(E-Vu.

[30%]
(b) A vorticity field, o(x,?), consists of two, thin, closed vortex tubes whose
centrelines are C, and C, and vorticity fluxes are @, and @,. The net helicity of the
flow associated with the tubes is defined as H = Iu -odl .
(1) Confirm that the contribution to H from tube | is given by the line
integral
H, = q{u-(®dr) .
G
[25%]
(i) Use Stokes’ theorem to show that H =0 if the tubes are not linked
(Fig. 1a), that H =2®,®, if the tubes are linked in a right-handed fashion
(Fig. 1b), and that H =-2®,®, if the tubes are linked in a left-handed
fashion (Fig. 1c). [25%]
(¢) If the flow is inviscid, it may be shown that H is conserved. Explain this
using Helmholtz’s laws. [20%]
(a) (b) ©)

Fig. 1
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2 (a) A two-dimensional vortex tube is aligned with the z-axis and has the
vorticity distribution

Here, I'; is the net flux along the vortex tube and ¢ is its characteristic radius. The

associated velocity field is, in polar coordinates,

u= Lo 1—ex r’ é
o P o° o

Show that this represents an exact solution of the two-dimensional vorticity equation

ow 1 6( 6@}
—+u-Vo=v——| r—
ot ror\. or

provided & = (Ct)"? for some constant C. Find the relationship between C and v .

(b) The peak vorticity, I, /(#5*), decays with time while the characteristic

radius, &, increases. Give a physical explanation for this.

(¢) Sketch Burgers vortex. Why does the peak vorticity and radius of the
Burgers vortex stay constant, in contrast to the example above?

(TURN OVER
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3 (a) Derive a relationship between the Reynolds numbers based on the Taylor
lengthscale, Re, = ul/v, and the integral lengthscale, Re, =uL,,, /v , where u is the

characteristic large-scale velocity and v the kinematic viscosity. Derive also a
relationship for the ratio /7, , where 77, 1s the Kolmogorov lengthscale.

(b) In asteady planar jet flowing in the x-direction, at a distance x = L from the
origin, the flow has characteristic width & in the y-direction. On the axis, the mean
velocity is U, and the characteristic turbulent velocity is u,. Give the order of

magnitude of the terms in the mean streamwise momentum equation, and hence show

that

U (O "

U, \L)
You may neglect viscous stresses and you can use the result from the y-momentum
equation that

10p vV

pax_ o

[50%]

[50%]
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4 Consider freely decaying homogeneous isotropic turbulence in a wind tunnel,
created by passing a uniform flow through a grid. In a moving frame of reference, the
turbulent kinetic energy £ is given by, for ¢ > ¢,,

k()"
kO tO
where ¢, is an arbitrary time at which the kinetic energy is k,, and m is a constant. At

this time, the large-eddy turbulent lengthscale L and the eddy turn-over time
T=L/k"? are L, and T, respectively.

(a) By reference to the usual production mechanisms of turbulence, discuss if it
is reasonable to assume that wind tunnel turbulence is homogeneous and isotropic very
close and very far from the grid. [30%]

(b) Experimental data give that m =1.2. Find the rate of growth of L and the
rate of growth of T'. [50%)]

(c) If the turbulent Reynolds number Re, = k'>L/v is 100 at ¢ =1¢,, find the
time when the Reynolds number decays to unity. [20%)]

END OF PAPER



Vortex Dynamics Data Card

Grad, Div and Curl in Cartesian Coordinates

Integral Theorems
Gauss: [(V-A)dV =§A-ds

Stokes ; J(VxA)-dS=§A-dl

Vector Identities

V(A-B)=(A-V)B4+(BY)A+AX(VXB)+BX(VXA)
V()= f(V-A)+A-Vf
VX(AXB)=A(V-B)~B(V-A)+(B-V)A~(4:V)B
VX (VXxA)=V(V-A4)-V24

Vx(Vf)=0

V(VxA)=0

Cylindrical Coordinates (r, 0, z)
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Cambridge University Engineering Department
4A12: Turbulence

Data Card

Assume incompressible fluid with constant properties.

Continuity:

Iy,
ox; =0
Mean momentum:
T T
% +aj% = ~—[1;§Z + 0% )9z — ag;?j +3;
Mean scalar: 55 53 55 GuF
o %o " o
Turbulent kinetic energy (k = uju}/2):
ok _ Ok 10ulp’  10ujuju; 3%k
o Yas, ~ pox 2 o5 oz

—— O Oy; 2 7
Y 9e, U\ Bg; o
i J
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T

Scalar fluctuations (02 = ¢'¢'):

do®  _ d0* 0% 0§ 0% (a¢f)2
T = — 29— — 2¢1d — — 2D | ~—
o TUigg, =P b Vi 2 G, o

Energy dissipation:




Scalar dissipation:

N 2
2N =2D (3_¢) ~ 2502
8$j k

Scaling rule for shear flow, flow dominant in direction z;:

u aﬂl

~ ——
Ltu’rb Oz 2

Kolmogorov scales:

P (1/3/6) 1/4

v = (v/e)?
vg = (ve)/*
Taylor microscale:
€= 151/;1—2
Eddy viscosity (general):
(TATAE S (% + ?)ZZ) + §k5ij
;! = —Dturbg—z

Eddy viscosity (for simple shear):

1,7

Uy = ~Viro——

1 %2 turb
Oza



