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1 Without any clear indication of inhaler contents, asthma patients are often caught off
guard when their inhalers run out. Since bronchial-opening drugs are needed at critical
moments, having an empty inhaler could have serious repercussions for the user. The US
Food and Drugs Administration (FDA) realised this in 2003, when it ruled that all new
pressurised metered-dose inhalers (pMDIs) must feature dose counters. Figure 1 shows a
typical pMDI inhaler that has to be adapted to meet the new FDA requirements. To trigger
the release of a dose the patient depresses the can within the body. A single aerosol dose is
then ‘fired’ via the stemblock out of the mouthpiece. You have been given responsibility
for the conceptual design of the new inhaler.

(a) Abstract the task to at least four levels and prepare an appropriate solution-
neutral problem statement for your task.

(b) List ten requirements for your new inhaler.

(c) Establish the overall function for the inhaler. Identify up to six sub-functions
and arrange these into a product function structure.

(d) Describe three potential design concepts and identify your best solution.

(¢) Summarise briefly the main selling features of your design that will ensure
success in the highly competitive pMDI marketplace.
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(a) cut-away of (b) pressurised (c) inactive (d) triggered
MDI body MDI can assembly assembly

Fig. 1
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2 (a) Describe the relative merits of Fault Tree Analysis (FTA) and Failure Mode
and Effects Analysis (FMEA) in assessing the operation of products, services or systems. [30%]

(b) A typical ticket machine of a type often used on the UK railway network is
shown in Fig. 2. Consider the scenario where a passenger arrives at the station in
Cambridge two minutes before their train is due to depart and needs to purchase a ticket to
Yeovil (i.e. a small town the other side of London).

(i)  Sketch a process function structure for purchasing a ticket. [10%]

(ii) Identify possible reasons why the passenger will miss their train using
FTA or FMEA in conjunction with the process function structure. Justify your
choice of method. [40%]

(iii) Suggest a number of design modifications that could be undertaken to the
ticket machine to improve the passenger’s chance of success. [20%]

Key:
1. ticket selection
2. coins, cards and notes

3. tickets and change

Fig.2
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3 A body of water of breadth b is to be crossed by a multi-span suspension bridge.
The designer hopes to determine the span length L and cable dip d, as shown in Fig. 3,
that will give the minimum cost for the whole crossing of n spans, where b=nL. For
preliminary design the total cost of the bridge is assumed to have only two variable
components: the cost of the suspension cables and the cost of the towers. The cost of the
cables is taken to be directly proportional to the volume of steel required. The cost of each
tower is assumed to be dominated by the cost of its subsea foundations and therefore
independent of both L and d. The bridge deck is assumed to be subject to a uniform load
w per unit length across the entire span. Relevant design and cost data for the bridge are
given in Table 1.

(a) If the discrete number of spans n is treated as a continuous variable equal to
b/L, show that a suitable objective function f for the cost of the bridge in terms of L and

d is
bwegaple > 8 b
=——<abel = 44 |+C —+1
/ 80, |d 3 fower| I,

You can assume that the length of cable used between the anchorages on the banks and the
towers at either end of the bridge is negligible compared to that used in the spans and that
the stress in the cable is equal to the design stress 0.

(b) From a starting point of L =2000m and 4= 100 m execute a single step of
the steepest descent algorithm to find an improved design.

(¢) By considering first- and second-order optimality conditions find the minimum
cost design.

(d) In the light of your answer to (c) comment on the performance of the steepest
descent method and the realism of the cost model.

(cont.
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L
Fig. 3

Crossing breadth b =10,000 m
Bridge deck design load w=160kNm™!
Design stress for high tensile steel cable o,; =1000MPa

842
Length of cable in a single span s =L 1+———2-

3L

2
Tension in suspension cables = wL”
&d

Unit cost of high tensile steel cable Ceapte = £100,000 m™
Cost of each tower Ciower = £6.532million

Table 1

(TURN OVER
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4 A manufacturer of diesel engine fuel injectors wishes to improve the design of their
injection system. In an injector, fuel is delivered at a pressure p to an exit orifice of
diameter D. Neglecting losses, the jet velocity u through the orifice may be determined
by Bernoulli’s equation

1 9
P—zpu

where 0= 850kg m™ is the fuel density.

(a) Show that the volumetric flow rate Q of fuel out of the injector is

m? [2
Q=——/—”.
4 \p

You should neglect any contraction of the flow as it leaves the orifice. [10%]

(b) In the current injector design fuel is delivered at a mean pressure of
p =1000 bar to an orifice with a mean diameter x4, = 0.5 mm. The pressure control

system is accurate to + 75 bar and the manufacturing tolerance on the orifice is
+0.15 mm. Find approximations for the mean (4, and standard deviation & of the flow

rate. You should assume that both p and D are normally distributed random variables
and that the specified tolerance ranges cover six standard deviations for both. [40%)

(¢) Find an improved design of injection system with a different combination of
nominal delivery pressure p and orifice diameter D that gives the same flow rate Q but
with reduced variance. You should assume that the tolerances for p and D do not
change. [35%]

(d) Comment on your findings and suggest an alternative strategy for improving
the accuracy of fuel delivery by the injector system. [15%]

END OF PAPER
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1.0 OPTIMIZATION
DATA SHEET

1.1 Series

Taylor Series

For a function of one variable:

Flxe +8)= fx)+6f ’(xk)+%52 F7(xp )+ Whete xpyq =X +8

For a function of several variables:

Fly + Ox) =ty )+ VPG F 83+ 8x'Hlx ) 8x+.. where xg =X, +0x

where {Vf (g k )}‘ is the Grad of the function at x, :

[af(lk) o (xy) %lnk_) }

axl 8x2

and H(g(_k) is the Hessian of the function at (ﬁk ):

) Pily) L i)
x> 0x10 X5 0x10 X,
9 (xy)
dx20 X3
%) k) 0 %(xy)
| 9xpd x; 9x,0 X, x>

Note: 1. Vf (J_ck) is defined as a column vector.

2. The Hessian is symmetric.
3. If fix) is a quadratic function the elements of the Hessian are constants and

the series has only three terms.



1.2 Line searches

Golden Section Ratio = ‘/32_ 1 06180

Newton’s Method (1D)

When derivatives are available: X1 =% — OV (x )}

When derivatives are unavailable:

=l(x22 “x32)f( (x3 _xlz)f( (xl —xzz)f(x3)
2 (xg- x3)f(x1)+(x3 xl)f(x2) (x1 = x2)£(x3)

1.3 Multidimensional searches

Conjugate Gradient Method

To find the minimum of the function
f(x) = f(§0)+ \%i (go)t Jx+ —;-agtHag , where dx=x—x; and x has n dimensions:

First move is in direction sqfrom x,where:

so = Vi(xo)
Then Xyl =X T OS5y
t
—5; VIlx
where o = —L’ql‘t—('k) (which minimises f(x) along the defined line)
Sy Hsy
Then Sge1 == Vf (pan )+ Bisy
\Y% H
where B = f(zkﬂ)t %k
s Hsy

For a quadratic function, the method converges at x, .



Fletcher-Reeves Method

To find the minimum of the function f(x) where x has n dimensions:

First move is in direction s, from x, where:

so==Vf(xo)
Then Xp41 =Xp + @ 8 such that f(x) is minimised along the defined line.
Then Sa1 ==V pa)+ Bes
\V, 2
where ﬂk - ( f(—k+1)

(Vf (o )

For quadratic functions, the method will converge at x . For higher order functions,
the method should be restarted when x, is reached.

14 Constrained Minimisation

Penalty and Barrier functions

The most common Penalty function is:

q(u.x)= f (£)+%i (maxlo, g,()] P

i=1
where f{x) is subject to the constraints g;(x)<0,...,g p(X)<0

A typical Barrier function for the same problem is:

alux)=f (z)wfgi ()
i=1



2.1

2.0 STATISTICS DATA SHEET

Standardised normal probability density function

f(z) , @ FS
Pz<a)=—= ¢ 2 dz
N2z
—c0
X—H
Z -
o
- -
el

z | 000 001 002 003 004 005 006 007 008 009
0.0 |.5000 .5040 5080 5120 .5160 .5199 5239 5279 .5319 .5359
0.1 |.5398 .5438 .5478 5517 .5557 5596 .5636 .5675 .5714 5753
02 |.5793 .5832 .5871 .5910 .5948 5987 .6026 .6064 .6103 .6141
03 | .6179 6217 6255 6293 .6331 .6368 .6406 .6443 6480 .6517
0.4 | .6554 6591 .6628 6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 | .6915 .6950 .6985 .7019 .7054 .7088 .7123 7157 7190 .7224
0.6 |.7257 7201 7324 7357 7389 7422 7454 7486 7517 .7549
0.7 |.7580 .7611 .7642 7673 7704 7734 7764 7794 7823 7852
0.8 |.7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
09 | .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
10 | .8413 8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 | .8643 8665 .8686 .8708 8729 8749 8770 8790 8810 .8830
12 | 8849 8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .901S
13 | 9032 9049 9066 9082 .9099 9115 9131 9147 9162 9177
14 | 9192 9207 9222 9236 .9251 9265 .9279 9292 .9306 .9319
15 | 9332 9345 9357 9370 9382 9349 9406 9418 9429 .9441
16 | 9452 9463 9474 9484 9495 9505 9515 9525 9535 .9545
17 | 9554 9564 9573 9582 9591 9599 .9608 9616 .9625 .9633
18 | 9641 96490 9656 9664 .9671 9678 .9686 9693 9699 .9706
19 | 9713 9719 9726 9723 9738 9744 9750 9756 9761 9767
20 | 9772 9778 9783 9788 9793 9798 .9803 9808 .9812 .9817
21 | 9821 9826 9830 9834 9838 9842 .9846 9850 9854 .9857
22 | .9861 9864 .9868 9871 9875 9878 9881 9884 9887 .9890
23 | 9893 9896 .9898 9901 .9904 9906 .9909 9911 9913 .9916
24 | 9918 9920 9922 9925 9927 9929 .9931 9932 9934 .9936
25 | 9938 9940 9941 9943 9945 9946 .9948 9949 9951 .9952
26 | 9953 9955 9956 .9957 9950 9960 .9961 9962 9963 .9964
27 | 9965 9966 9967 9968 9969 9970 .9971 9972 9973 9974
28 | 9974 9975 9976 9977 9977 9978 .9979 9979 9980 .998!
29 | .9981 9982 .9982 9983 .9984 9984 .9985 9985 9986 .9986
30 | 9987 9987 9987 9988 .9988 9980 9989 9989 9990 9990
3.0 | 9990 9991 9991 9991 .9992 9992 .9992 9992 9993 .9993
32 | 9993 9993 9994 9994 9994 9994 9994 9995 9995 .9995
3.3 | 9995 9995 9995 .9996 9996 9996 9996 9996 9996 9997
3.4 | 9997 9997 9997 9997 9997 9997 .9997 9997 9997 .9998

TABULATED VALUES




2.2  Moments of a randomly distributed variable

Expectation

oo b
E[g(x)] = Ig(x)f(x)dx where Pla<x<b)= Ifx (x)dx

—c0 a

Central and non-central moments

Moment Definition Name Normal
Distribution
1" non-central | Elx]=pu, Mean u
1* central Elx-u,)=0 0
nd "
2" central B k x-p)t|=o2 | Variance o2
3" central El( . /‘x)3_ Skew 0
- '
4" central El( X— Uy )4_ Kurtosis 304

Due to its symmetry the odd central moments of a normal distribution are all zero.
The even central moments of a normal distribution are given by:

.....

Relating central and non-central moments

E[(x— ,ux)"J - E[i['jx’ ()" } = i[ﬂﬁm)"'iE{xi}

i=0 =0

-~

Elxn] = El((x = M)+ Ly )n] = i[?)E[(x - /‘x)i an—i

i=0

f
where n ="C, L
i ri(n-r)!



2.3  Combining distributed variables

For the function y=g(x, x9,... %)

where xj, xo etc. are independent and defined by their respective distributions:

Exact formulae for one and two variables

y Auy O'y2

1 x+a U, +a .2
X
2 ax ally a20'x2
3 ayxy +azxy aiy taxin a120'12 + a220'22
4 x1xy iy ﬂ120-22 + ;1220'12 + 0'120'22
distributions only) , ) 2 2
7] M~ +03

Where: 4 = mean; ¢ = standard deviation; a = constant.

Approximate formulae

KL 32
o s 28] 28] .
X, dxy p

og 2 og 2
2 2 2
O'y = |:a—x1:| o +[_ax2:| oy +....




