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1 Instrumented hammers are used for modal testing in a factory that designs and
manufactures a large number of different automotive components.

(a) Explain (with suitable reference to the modal parameters) how modal testing
might be useful for:

(i) guiding design changes;
(i) quality control;
(iii) validating computer models. [25%]

(b) Sketch a typical instrumented hammer and identify its principal
components. [15%)]

(¢) The head of a particular hammer has a mass of 0.1 kg. Suggest a sensible
value for the stiffness of the hammer tip if it is to be used for modal testing of a floor
panel at frequencies up to 2 kHz. [20%]

(d) The hammer is fitted with a force transducer of sensitivity 4 pC/N. Estimate
the peak charge output from the transducer if the hammer velocity at impactis 2 m/s.  [20%]

() A charge amplifier is used to generate a measurable voltage. Sketch a
suitable arrangement using a single operational amplifier to give a peak output of 1 V
with a high-pass filter frequency of around 5 Hz. Explain the purpose of the high-pass
filter. [20%]



3

[You may assume in this question that a Helmholtz resonator of volume V7 with a
neck of effective length L and cross-sectional area S has resonant frequency

W= 01’—‘% where c is the speed of sound in air.

You may also assume that the lowest mode of an organ pipe closed at one end and
open at the other is a standing wave with a quarter wavelength in the length of the

pipe.]

(a) Explain briefly how a Helmholtz resonance differs from a standing-wave

resonance as in an organ pipe.

(b) & A bottle has the form of a circular cylinder with cross-sectional area 4
and length x. The bottle is closed at one end, and has a circular cylindrical
neck at the other end with length L and cross-sectional area S.

(i) Compare the Helmholtz resonance frequency of the bottle with the
lowest standing-wave resonance frequency of the same bottle if the neck
were removed so that the cylinder was simply open at the top.

(ii}) The neck section of the bottle is gradually widened until it has the
same radius as the cylinder. Describe what happens to the Helmholtz
resonance mode during this process.

(¢) (1) An ocarina is a musical instrument based on Helmholtz resonance. A
chamber has a number of identical small holes, any combination of which
can be covered by the player’s fingers. The instrument has a mouthpiece
enabling a note to be blown at the resonance frequency. Obtain an
expression for the playing frequency as a function of the number of holes
left open, defining any symbols you introduce.

(i1) A semitone is the musical interval between two frequencies in the ratio
2112 How many holes, approximately, should be open on the ocarina so
that when one more hole is opened the note changes by one semitone?

(d) Suggest two examples where Helmholtz resonance is relevant to the noise

performance of road vehicles or aircraft.
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3 A vibrating system is to be modified by attaching a spring-mass oscillator, in the
two alternative ways sketched in Fig. 1. In both cases an oscillator with mass m and
spring stiffness £ is attached to the same point on the system. At this point, the original
system has a driving-point receptance (displacement per unit force) given by the usual
modal formula

iy

Hw)= 3 —"—,

modes n ¥n ~ @
where the nth mode has natural frequency w, and normalised amplitude at the driven

point u,, and the system is assumed to be undamped.

(@ (i) In the first case, the oscillator is attached as shown in Fig. 1(a), with
the mass m fixed rigidly to the original system. Explain what the interlacing
theorem says about the new natural frequencies.

(i1) Sketch a graphical construction which shows the new 'natural
frequencies, and verify that the interlacing prediction is correct.

(b) (1) The oscillator is now attached as in Fig. 1(b), in a “tuned absorber”
configuration. Derive an equation satisfied by the new natural frequencies
in this case, and give a graphical construction to show where they lie.

(i) What can the interlacing theorem say about this case?

H(w) H(w)

/ =
Original system
Fig. 1(a) Fig. 1(b)
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4  (a) Describe briefly the main mechanisms of damping within vibrating
structures. Which of these mechanisms are linear and which nonlinear? How would
you test experimentally whether damping was linear or nonlinear? [40%]

(b) (i) A uniform bending beam of length L and bending rigidity EI is freely
pinned to fixed anchorages at both ends. Damping treatment is to be applied
to part of the beam in order to damp the lowest transverse vibration mode.
The damping treatment can be modelled by converting the Young’s modulus
E of the beam, in the treated region, into a complex value E(1+in) where
1n=0.01. Explain briefly how Rayleigh’s principle can be used to predict
the modal damping factor. If the damping treatment can be applied over a
maximum of one half the length of the beam, where should it be put for best
effect? Calculate, approximately, the resulting modal Q factor. [50%]

(il) Without detailed calculation, explain what would happen to the
optimal position of the damping if the boundary conditions of the beam were
changed to clamped-free. [10%]

[You may assume that the beam has potential and kinetic energy expressions:

respectively, where w(x,¢) is the transverse displacement and m is the mass per

unit length. You may also assume that the nth mode shape of an undamped
pinned-pinned beam is u(x)=sin(nmx/L), and that given a complex modal
frequency w, the Q factor is given by Q= Re(wz)/lm(wz).]

END OF PAPER



