ENGINEERING TRIPOS PARTIIB

Friday 25 April 2008 2.30 to 4

Module 4C8

APPLICATIONS OF DYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
4C8 datasheet (3 pages)

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the
questions printed on the subsequent pages

of this question paper until instructed that
you may do so by the Invigilator
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1 A quarter-car model is shown in Fig. 1. The sprung mass is m; and the unsprung
mass is m,,. Their corresponding displacements are zg and z,,. The vertical tyre stiffness
is k; and the suspension stiffness and damping are k and c. The road input displacement

18 z;.

(a) Show that
ms.z's(t)+mu2u(t)_kt[zr(t)_zu(t)]=O‘ [20%]

(b) Transfer functions relating road input velocity to body acceleration, working
space and tyre force outputs are defined as

O RPNAREN, = C RPN A O =G

2, (s)” 4(s) A7

Hp,(s)=

where s is the Laplace transform variable. Explain why road input velocity (as opposed
to displacement) is an appropriate input quantity. Briefly state the relevance of each of
the output quantities. [20%]

(¢) Use some or all of the expressions given in (a) and (b) to show that

—mSHBA +(1—%@2JHTF =jom,. [35%]
t

(d) Why is the expression given in (c) relevant to understanding the trade-off
(typically presented in the form of a ‘conflict diagram’) between root-mean-square
values of body acceleration and tyre force? [10%]

() From the expression given in (c) find an expression for the frequency at

which Hp, is independent of Hyp, and state Hp4 at this frequency. Comment on the
result. [15%)]

(cont.
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2 Figure 2 shows a side view of an idealized model of a tandem-axle suspension of
a heavy truck. The two closely-spaced axles, each of point mass m;,, , are connected by a
light rigid beam of length 2a. Springs of stiffness k; represent the vertical tyre
stiffnesses. The suspension, with stiffness ¥ and damping c¢, is connected by a
frictionless pivot to the centre of the beam. The centre of the beam has vertical

displacement z,, and pitch angle 8, . The upper end of the suspension is connected to the .

sprung mass mg which moves in the vertical direction with displacement z;. Inputs are
the road displacements at the leading and trailing axles, zq and z3 . The vehicle travels
with speed U in the direction shown, hence the road input displacement z; is a delayed
version of the displacement input z;. Parameter values are: my; = 10,000 kg;
my =300 kg; k=500 kN m ' k=2.67MNm ;¢ =40kNsm ;anda=1m.

(@) One of the three natural modes of vibration of the undamped system has
eigenvector { zgz, 6, }* = { 00 1 }". Sketch this mode shape and hence determine the
natural frequency of this mode. Note that it is not necessary to derive the full equations

of motion.

(b) The remaining two natural modes of undamped vibration involve z; and z,,
only, with &, = 0. Sketch the approximate shape of these two modes of vibration and
hence estimate the natural frequency of each mode. Note that it is not necessary to
derive the full equations of motion. (Hint — the mode shapes are the same as those of a
quarter-car model obtained by setting a = 0).

(¢) Wheelbase filtering is the mechanism by which the speed U and wheelbase
2a influence the excitation of the modes of vibration of the vehicle.

(i) Consider the vehicle travelling very slowly over a sinusoidal road
profile of wavelength A and displacement amplitude Z,. Let the amplitudes
of the displacements z, and 6, be Z, and @, respectively. Sketch the
magnitudes of the ‘bounce gain’ Z,/Z, and ‘pitch gain’ @,a/Z, of the

wheelbase filter as functions of the spatial frequency 2a/A.

(cont.

[10%]

[20%]

[40%)]
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(ii)) The vehicle travels on a randomly rough road at a speed of
U=20m s-1 . Are there any frequencies within the range 0 Hz to 25 Hz at
which the response might be problematical? How could the suspension be
modified to improve the vibration performance? [30%]

Fig. 2

(TURN OVER
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3 A space probe is put into a circular Earth orbit of radius 71 by a booster rocket.
Once in orbit, the booster is explosively jettisoned. The impulses of this explosion act
tangentially along the orbit path, such that the velocity of the probe increases and that of
the booster decreases (without becoming negative). After the explosion the booster and
the probe, which both have the same mass, separate with a relative velocity V. The Earth
may be treated as a perfect sphere.

(a) Draw a sketch showing the original circular orbit and the two subsequent
elliptical orbits, in relation to the centre of the Earth. [20%)]

(b) Find the major-axis lengths of the two new orbits, in terms of #;, gz and V,
where u is as defined on the data sheet. [40%)]

(c) What must the value of V' be (in terms of r; and u) for the probe just to
escape the Earth’s gravitational field? [20%]

(d) What value of ¥ is needed such that the perigee of the booster’s new orbit
lies on the surface of the Earth, allowing the booster to coast back to Earth? [20%]
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4  (a) Explain clearly the terms mean anomaly, mean motion, eccentric anomaly,
and frue anomaly, using diagrams where necessary. Derive an expression that relates the
mean anomaly to the eccentric anomaly. [40%]

(b) A GPS receiver has calculated that the mean anomaly of a particular GPS
satellite is 0.6315 radians at a given instant. The satellite has also broadcast the
following data about its ephemeris:

eccentricity =0.020;
semi-major axis = 26610 km;
right ascension = 30.0°;
inclination = 55.0°;

argument of perigee = 45.0°;
other corrections are negligible.

(i) Show that the eccentric anomaly of the satellite is 0.6435 radians, and
thus calculate its true anomaly. [20%]

(i) If the receiver is situated at the North Pole, calculate the distance

between the receiver and the satellite, to the nearest kilometre. You may
assume that the Earth is a perfect sphere of radius 6378 km. [40%)]

END OF PAPER
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DATA ON VEHICLE VIBRATION

Random Vibration

E[x(t)2 ]: % I:OT x(t)2 dt = Iwzoo S,(@)do  (or Iw=°°S (@)dw if S ) is single sided)

a)=—00 0)=0 x

$1(@)= S, ()

Single Input — Single Output
2
Sy (a)) = }ny (a)j Sy (a))

W0)= H ) (0)x(0)

Two Input — Two Output

{yl(w)}_[ﬂn@) Hu(w)}{x«wn

»@) |1y (@) Hyw)|lx@)

{Slyl(a)) Sl);_(a))}zliHH(a)) le(w)]*[Slxl(a)) Slxz(a))}[H”(w) HIZ(Q)T

$31@) $3,@)] |Hy) Hyl)| |S3@) 55,@)] Hy(e) Hylw

* means complex conjugate, T means transpose

If x| and x; are uncorrelated:
S(x1 +X2)(a)) = le (a)) + S.X2 (0))

S5 (@)=53,(@)=0

Bl )+ 22 (0P | By (0] ey 0]
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DATA ON POTENTIAL THEORY AND ORBITS

1 For a distribution of mass with density o(r) the gravitational potential U satisfies Poisson’s
equation

VU = -4nGp
where G is the gravitational constant (= 6.67x10"" Nm’kg?). The gravitational force F
experienced by a unit mass is given by

F=VU.

2 Invacuo p= 0, so that U satisfies Laplace’s equation

ViU =0,

3 For a point mass M at the origin

Ulr)=GM /|r| .
For a general distribution of matter

CRdliE=cg

[r—x

For a thin spherical shell of radius a and mass dM

GdM/lri, r>a
()= Tt
GdM/a, r<a

4 Equations of motion for a particle in a plane orbit, in plane polar coordinates (r, 8):

F-rdt =7, ré+2r“é=fe

where f,, f, are the radial and transverse force components, per unit mass.

If fo=0 (e for a central force) the second equation leads to conservation of angular
momentum:

r0 = h = constant .

5 For a central force, the substitution #=1/r leads to an equation for the shape of the orbit,
expressed as u =u(#). The central force (assumed attractive) is described by a function f{u) per
unit mass, and for a given angular momentum per unit mass 4 the orbit satisfies

Ou  fw)
0 nu
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6 The equation of an ellipse in polar coordinates (r,8) relative to a focus is

L

= where e is the eccentricity.
(1+ecosb) e

The semi-major axis is g = L/(l —e? ), the semi-minor axisis b= L/+V1—e? .

7 The mean anomaly M, the eccentric anomaly F and the true anomaly 6 are related by

. ' E- . . .
M=E-esinE and cos@=—22"¢ where e is the eccentricity.

1—ecosE

8 Spherical polar coordinates. Define (r,6,¢) so that r is radial distance, 6 is angle from the
polar axis (co-latitude) and ¢ is the angle of longitude. Then:

oU_ 10U 1 aU_

VU = C, 9+ " €y
or rae rsin@ o
2
AT NI AL AV Y.y P
or or | r’sind 00 00| r°sin“0 9

9 Axisymmetric solutions to Laplace’s equation arising from separation of variables in
spherical polar coordinates are

U(r.0)= { r" P, (cos6)

r™ P (cos®)

where P, is the Legendre polynomial of order n, describing the nth zonal harmonic. The first
few Legendre polynomials are as follows:

RE)=1 RE)=t RE)=pe-1)2
Re)=(52-3)2  PE)=(355" -3082 +3)8
10 The external potential of the Earth can be expressed as a sum of spherical-harmonic

contributions. We consider in detail only the effect of the zonal harmonics, whose contribution
can be written in standard form

U(r,8)= [ i (R/r)'J P, cose)]
n=2

For the Earth, p=GxMggh = 398603 km’s?, mean radius R = 6378 km,
J, =1082x10"°, J,=-2.55x10"°, J, =-1.65x107°

Gravitational mass of the sun = 332946, gravitational mass of the moon = /81.3

Mean radius of Earth’s orbit = 1.496 x 10°* km, that of moon’s orbit = 384400 km.
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