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Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachments:
4C9 datasheet (6 pages).
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Single-sided script paper Engineering Data Book
CUED approved calculator allowed
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printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator



1 (a) (i)  Using subscript notation, and not otherwise, prove that

c_l_><2°g><4=(c_"g)g'f_l)—(c_l'f_l)@'g)

(i) Expand the expression—emp €ng Emn,pq =0 if

lwheni=1, j=2
¢j =10 wheni=j

—lwheni=2,j=1

(b) A yield criterion f is defined by the relation f=0-0ao ~Y <0 in

which o= %G{jolfj is the effective Cauchy stress, o is a constant and Y is the

current flow stress.

(i)  Take partial derivatives of the yield criterion to give an expression for

all components of the strain rate tensor in terms of a scalar rate parameter A .

(i) Using your answer to (i), together with the Voce flow rule
6=K [1 —-m exp(—né)]

in which €= %gije‘i' is the equivalent strain, and K, mandn are
material constants, derive a formula for the scalar rate parameter 1 in

terms of the effective stress and its time derivative.
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[25%]
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[25%]



2 A radial force F acts at one side of a circular hole of radius a in an infinitely large
plate as shown in Fig. 1. The stress field associated with the applied force can be assumed
to decrease with increasing distance from the hole.

(a) The Flamant solution for the force on the edge of a half space suggests an
Airy stress function of the form

o(p.y) =~V siny .

Fpy
T
Assuming that this applies in this example, write down expressions for the stresses

O pps Oyy and Opy ata general point P in the material. [25%]

(b) Using the usual relation for the rotation of second order tensors, i.e.

Ouf = Ag; Agj Ojj , Or otherwise, obtain expressions for the stresses 0., 0gg and 0,9

at point Pinterms of F, p, ¥ and @ where coordinates (r,0) are as shown in Fig. 1. [25%]
©) Verify that around the periphery of the hole these expressions reduce to

F
O = 2—”;(1— cos6)

and explain why this means that additional terms are necessary in the original expression for

¢(p,y). [25%]
(d) By referring to Table I of the Data Sheet suggest the form that these

additional terms might take and indicate how the coefficients associated with each of them

could be evaluated. [25%]

(TURN OVER



3 Figure 2(a) shows a section through an infinite width, symmetric, frictionless
extrusion process in which the ram moves at constant speed v. The workpiece is of a

rigid-plastic material with yield stress in shear of magnitude k.
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Total ram force
N
Exit material h Ram speed, y
unrestrained
Line of symmetry
Fig. 2(a)

(a) By defining a suitable statically admissible stress field derive a lower-bound
estimate of the ram force. [30%]
(b) By defining a suitable kinematically admissible velocity field derive an

upper-bound estimate of the ram force. [30%]
(c) Using the slip-line field shown as ABCD in Fig. 2(b) calculate the ram force

using the Henky equations. [30%]
(d) Comment on the applicability of these estimates to a real extrusion process. [10%]
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Fig. 2(b)
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Module 4C9 Data Sheet

SUBSCRIPT NOTATION

Repeated suffix implies summation

a=a1e +azey + ;g3 aie;
aeb a;b; = a;b;0;j
c=axb ¢ = €a;by
d=ax(bxg) dy =—ejjpersajbrcg = ajbic - abicy
Kronecker delta §;; g;=1for i=j and §;;=0 for i#
€ijk ¢;jx =1 when indices cyclic; = -1 when indices anticyclic

and = 0 when any indices repeat

e—0 identity €ijkCilm = j15km -0 jm5kl

tracea tra= a; =aytayp tasg

dJoj; _ doy; . d0 ) . 903 0jj
d; dx;  dxy  dr
gradg =Vo 29 o,
o
divV Vi
culV =¥ xV eijka,j
Rotation of Orthogonal Axes
If 01'2'3" is related to 0123 by rotation matrix a;;
vector v; becomes Vg = GgiVi

tensor 0 becomes Oop = A0

1 Feb 08



Evaluation of principal stresses
1

deviatoric stress s;; = 0;; ~—030;;
ij i3 kkCij
o ~1,0° +1,6-13=0 li=0;=tro

12 = %(O-iio-j' - O-ijo-i')

1
I3= P (eﬁkepqro'ipo'jq O'kr)
3 2 _ 1 1
S =Jis“+Jrs=-J1=0 = ¢, = tro - = g * 0. G S
1 2 3 Ji=s;=tts; Jp= 2lele ; J3 = 3Sljsjkskl

equilibrium Ojj»ithj=0
small strains .
2(; o) 23 )
compatibility eij,kl + gkl,l:j - glj,ki - gki,ljepikeqjlgij,kl =0
equivalent to e, e,i1€5i ki = €pike _(928,-]- 0
pik€qji€ij kI = €pikeqjl =
V" oy 0y
Linear elasticity ;i = Cijui€xi
Hooke’s law Egij =(1 +V)th - Vo'kk6ij .
Lamé’s equations 0 =Aepdj +2ue;;
von Mises equivalent stress — 3
o= Esijsij = \'3‘,2

equivalent strain increment _ 2
1 de = 1/3— de;;de;;

Elastic torsion of prismatic bars

Warping function ¥(x;,x; ) satisfies Vi = Y;=0

If Prandtl stress function ¢(x;,x, ) satisfies V2¢ =¢; =—2Go where « is the

twist per unit length then

o d
f’31=¢,2=5.x—¢2 ; 632=“¢,1=—a—)z and T =2[[, ¢(x;, % Jixdx
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Equivalence of elastic constants

E 1% G= A
E v - - E ___VE
21+v) A+v)a-2v)
E G - E-2G - 2G -EG
2G E-3G
E A - E-A+R E-3A+R _
41 4
v, G 2G(1+v) - - 2Gv
1-2v
v,A A(l+v)(1-2v) - A(1-2v) -
v 2v
G A G(3A+20) A - -
A+G 2(A+G)
R=vE% +2EA+92
Two-dimensional Airy Stress function
Biharmonic equation V4¢ =0,00pp=0
Stresses OB = €gy €85 Poys
lifa=1,B=2
where ey = €358 = Oifa=f
-lifx=2,B=1
Plane stress and plane strain
1
Ggyp = g{cr“(l +K)+ 0 (k - 3)}
1
G822 = -8—{0'22(1 +K)+ (o] I(K - 3)}
4!
Gy = —=
12 )
k=03-v)/(1+v) inplanestress and
where
K=3-4y inplane strain
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Plasticity

von Mises yield criterion

generalized flow rule

Slip Line Fields

Henky equations

Geiringer equations

P —2k¢ = constant along « line

P+ 2k¢ = constant along S line

dvy do .
—% =yg— along a1

ds Vﬁ dS g 1mne
dVﬁ d

L Vg Esﬂ along f3 line
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Table I — The Michell solutions — stress components

¢(r,0) Orr Ogo Org
r? 2 2 0
r2Inr 2Inr+1 2Inr+3 0
Inr 1/r? ~1/r? 0
0 0 0 1/r?
r3 cosO 2rcos@ 6rcos@ 2rsin@
rOsin@ 2cos0/r 0 0
rinrcos@ cos@/r cos@/r sin@/r
cos@/r —2cos0/r° 2c0s0/r° ~2sinf/r
r2sin@ 2rsin@ 6rsin@ —2rcosf
r@cosf —2sin@/r 0 0
rinrsin@ sinf/r sin@/r —cos@/r
sin@/r —2sinf/r> 2sin6 / r> 2c0s6 /1>
2c0sn9 | —(n+1D)(m-2)"cosnf | m+1)n+2n"cosn® | n(n+)r"sinnd
2 cosn0 | —(n+2Xn—-1Dr""cosnB | (n—1)n—-2)r""cosnd | —n(n-1)r "sinnd
" cosnb —n(n—1)r""% cosnd n(n—1)r""2 cosnd n(n—1)r""2sinnd
reosn | —n(m+1r "2 cosnd n(n+1)r "2 cosnd —a(n+1)r " 2sinng
26000 | =(n+D(n=2)r"sinn® | (n+1)n+2)r"sinn@ | —n(n+1)r" cosnd
26000 | —(n+2)(n—=1r""sinnd | (n—1)n—-2)y""sinn® | n(n—1)r""cosnd
M sinnd —n(n—1)r""2sinnd ' n(n—1)r""2sinnd —n(n—1)r""2 cosnd
" sinnd —n(n+1r " 2sinng n(n+1)r "2 sinng n(n+1)r""2 cosnd
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Table II - The Michell solutions — displacement components

For plane strain k= 3—4v; forplanesstress k=(3-v)/(1+V)

#(r,0) 2Gu, 2Gug

r2 (x—Dr 0

Inr (xk—Drinr—r (x+1)r0

Inr ~1/r 0

0 0 -1/r

r3 cosh (x ~ 2)r% cosd (c +2)r sinf

+0sind 0.5[(x —1)8sin6 — cosO 0.5[(x —1)BcosO —sinf

+(x+1)Inrcosf] —(k+1)Inrsin0]

0.5[(x +1)B8sin0 - cosO 0.5[(x +1)0cos0 —sinf

rinrcos® +(5 - 1)Inrcosf] —(c—1)Inrsing]
cosf/r% sin@ / r?

cosf/r

Ssind @ - 2)r? sin6 ~(x - 2)r® cos@

0cosf 0.5[(k -1)8cosO +sinf 0.5[-(x — 1)0sin0 — cos@

—(k+1)Inrsin@] — (K +1)Inrcos@]

0.5[-(x+1)8cosf —sinf 0.5[(x +1)0sinB + cosO

rinrsin® +(@—Dlnrsin6] +(@c—1)lnrcosd]

sinf/r sinf / r* ~cosB/r?

2 cosnb (x—n—1)r" cosnd ( +n+1)r"sinng

2 cosnd (+n—1)r " cosng ~(c~n+1)r"sinng

" cosnf —nr" L cosnd nr" Lsinng

r " cosnf nr " L cosng nr " Lsinng

2 5inno (c —n—~1r"*sinng ~x +n+1r" 1 cosnd

P2 Gin g (c+n—1)r " sinng (& —n+1r " cosnd

r" sinn@ —nr" Lsinng —nr" Leosng

r "sinnd nr " Vsinng —nr " eosnd

JAW/IMA
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