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1 A classifier is to be constructed using generative models and Bayes’ decision rule.

A d-dimensional observation feature-vector is to be used.

(a)

(b)

Initially the classifier is to be used with K > 2 classes.

(i)  State Bayes’ decision rule and how it may be used with this classifier.

(i) Discuss the differences between a classifier constructed using
generative models and one using discriminative models. Under what
conditions will the classifier using generative models yield a classifier with
the minimum probability of error?

The classes are now grouped together so that only a binary classifier (K = 2)

is required. Using Bayes’ decision rule, the classifier partitions the feature-space into two

regions, 1 where the observation is classified as belonging to class wq, and Q) where

the observation is classified as w,.

(1) Give an expression for the probability of error for this classifier in terms
of the class-conditional probability distributions for the two classes, p(x|w;)
and p(x|w,), and the priors for the two classes, P(w;) and P(w;).

(ii) Show that an upper bound on the probability of error, P(error), is given
by

Plerror) < [ /pilonP(anp(wy) Plagdx

Note that for two non-negative numbers a and b, if a < b then a < v/ ab.

(iii) Gaussian class-conditional probability distributions are to be used. The
mean vector for class @ is p; and for class wp it is (5. The covariance
matrices for the two classes are the same, . The priors for the two classes are
also the same. Find an expression for the probability of error in terms of only
U1, Uy, 2 and constant terms. This expression should not be a function of x.
The following equality may be useful: if x is a d-dimensional vector then

1
/exp (—EX’Z'IX—FM’Z_IX) dx = (21)2|2|1 2 exp (%u’z_lﬂ>
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2 A classifier is to be built for a two-class problem. There are n, d-dimensional,
training vectors, X1,...,Xp, with class labels, y{,...,y,. If observation x; belongs to class
w; then y; = 1, and if it belongs to class @, then y; = 0. The classifier has the form

1

Bl D) = o)

(a) What form of decision boundary can be obtained with this type of classifier? [10%]

(b) Show that the log-probability of the training data may be expressed as

n

Z(b) = 2,1 (vilog(P(w1]x:,b)) + (1 —y;)log(1 — P(w |x;, b))

[10%]
(c) The parameters of the classifier, b, are to be trained by maximising the log-
probability, £ (b).
(i) Derive an expression for the derivative of _Z’(b) with respect to b. How
can this expression be used to find the model parameters? [30%]
(i) Show that the Hessian, H, that may be used to train this classifier can
be expressed as
H=-S'RS
Find expressions for the matrices S and R. [25%]
(iii) Give an appropriate formula for finding the model parameters that
involves the Hessian. What are the advantages and disadvantages of using
this form of expression compared to the one in part (c)(i)? [15%]
(iv) Comment on the form of the Hessian matrix in part (c)(ii) and what it
implies for this optimisation problem. [10%]

(TURN OVER



4

3 Regression is to be performed using either basis functions or a Gaussian process.

There are n, d-dimensional, training observations, X = [xy,... ,Xn], with associated output
values y = [y1,...,yn] . The outputs are related to the observations by y; = f(x;) + € where
the prediction noise, €, is Gaussian distributed, € ~ .#'(0, 0'3).

(a)

(b)

For basis function regression, the regression function is of the form

£x) = EWi¢<||xi—x|i>

(i) Derive an expression for the Maximum Likelihood (ML) estimate of
the parameters of the regression function, wy,...,wp, in terms of the training
observations and output values.

(i) Hence derive an expression for the distribution of the output y for the
observation x using the ML regression function parameters.

For Gaussian process regression, the regression function is jointly Gaussian

distributed with the training outputs, y. A squared exponential covariance function is to be

used to which an additional term is added for the prediction noise €. The mean function

is set to 0.

(c)

(1) Give an expression for the squared exponential function between the
observation x and training observation x;. Is this covariance function
stationary?

(ii) By deriving an expression for the joint distribution of f(x) and the
output values y, show that the mean, u, and variance, 0'2, of the distribution
of the output for observation x has the form

p = dEly
02 = ¢c—dEld+c?

Find expressions for the scalar ¢, vector d and matrix E.

Compare these two forms of regression. You should discuss computational

cost, storage and how accurate the regression process is.

(cont.
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The following equality for vectors may be useful for this question. If a and b are

HEG (N )

alb~ A (la +Zab2;bl (b—p),Zaa — Zabnglzba)

jointly Gaussian,

then

(TURN OVER



4 An M-component mixture model is to be used as the probability distribution for a
1-dimensional binary value x. Each of the component distributions has the same form, a
Bernoulli distribution. Thus for component m, wy,, the distribution may be written as

p(x‘wm7lm) = A,J;l(l __Am)(l—x)

There are n independent training examples, xy,...,X,, to estimate the model parameters.
The component priors, ¢y,...,cp, are known and fixed. The parameters of the model are
to be estimated using Maximum Likelihood (ML) estimation.

(a) Find an expression for the log-likelihood of the training data in terms of the
model parameters, Aq,...,Ay.

(b) Expectation-Maximisation (EM) is to be used. The auxiliary function for this
task may be written as (ignoring terms not involving Aq,...,Ap)

n M
QA,A) =K+ Y P(wnlx;,A)log(p(xi|0m, Am))

i=1m=1

where A is the set of all model parameters, A1,...,Apy.

(i) Describe how EM is used to estimate the model parameters and the part
played by the auxiliary function. Why is EM often used for mixture models?

(ii) Derive the update formula for finding the parameter estimates.

(c) The exponential family is an important class of probability distributions.
Rather than using a mixture of Bernoulli distributions, a mixture of members of the
exponential family is to be used. For component m the distribution is now

1
P(x|am, o) = - exp(op4(x))
m

where Z,, is a normalisation term, f(x) and o, are vectors, possibly one-dimensional.

(i) Show that the Bernoulli distribution is a member of the exponential
family and find expressions for Z,, and o,.

(i) Derive an expression for the auxiliary function in terms of the
parameters of the exponential distributions, oq,..., 0y, and the associated
normalisation terms, Zj,...,Zy. Comment on using EM with members of
the exponential family.
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5 Speaker Verification is to be performed using Support Vector Machines (SVMs). A
d-dimensional feature vector extracted every 10 milli-seconds is used to parameterise the

speech data. A separate SVM is trained for each speaker.

(a)

The system is to use a Fisher kernel based on an M-component Gaussian

mixture model (GMM) that is Maximum A-Posteriori (MAP) adapted to the enrolment
data of the speaker. For this system the following form of the Fisher kernel is used

KO0™,00) = [V, 10g(p(0™16))] [Vulog(p(0]0))]

where O and O\ are two different sequences and log(p(0™)|6) is the log-likelihood
of sequence om) using the MAP-adapted GMM. V, indicates that derivatives with

respect to all the component mean vectors are used.

(b)

(m)

where o;

(1)  Briefly describe how an SVM with the Fisher kernel can be used in a
speaker verification task.

(i) By writing the expression for the log-likelihood of observation sequence
0™ derive an expression for the feature-space associated with the Fisher
kernel in terms of the component means and variances. What is the
dimensionality of the feature-space?

The Fisher kernel is replaced by a sequence kernel which has the form

1(m) 7(n)
k(om oy = 3 zks m) )

=1 j=

is the i vector in the sequence O™, k%(.,.) is either a linear kernel, or a

Gaussian kernel with width .

(i) Under what conditions will the sequence kernel with a linear kernel
yield the same classifier as a Fisher kernel?

(i) Give the form of the Gaussian kernel. Compare the sequence kernel
using this Gaussian kernel and the Fisher kernel for speaker verification. You
should discuss the computational cost and strengths and weaknesses of the

two forms.
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