ENGINEERING TRIPOS PART IIB

Friday 9 May 2008 2.30 to 4

Module 4M6

MATERIALS AND PROCESSING FOR MICROSYSTEMS (MEMS)

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Attachments: 4M6 Data Book (13 pages).

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS

Engineering Data Book

CUED approved calculator allowed

You may not start to read the questions printed on the subsequent pages of this question paper until instructed that you may do so by the Invigilator

- 1 (a) What factors affect the selection of particular materials in the design of a MEMS device? [25%]
- (b) Fig. 1 shows a microcantilever beam of thickness h, width b and length l that is to be used for detecting a particular single strand of DNA. The beam is to be oscillated by mounting the system on a piezoelectric stack. The top side of the microcantilever will be coated in the complementary single strand of DNA, so that a change in the resonant frequency of the microcantilever will occur upon attachment of the single strand of DNA to be detected. The oscillation of the microcantilever is detected by reflecting a laser beam off the top surface of the microcantilever onto a photodetector.
 - (i) What is the figure of merit for the selection of the microcantilever beam material if the resonant frequency is to be maximised for a given beam size? [15%]
 - (ii) Hence, suggest a suitable material for the fabrication of the microcantilever beam. Justify your answer. [15%]
 - (iii) Construct a process flow for the fabrication of your microcantilever beam from a bare silicon wafer. Justify your choice of processes. [45%]

NOTE: The spring constant k for a beam of thickness h, width b and length l is given by

$$k = \frac{Ebh^3}{12l^3} .$$

Fig. 1

2 (a) Describe how *rf magnetron sputtering* can be used for the deposition of metallic thin films as well as metal oxides and metal nitrides. Illustrate your answer by including a schematic diagram of an rf magnetron sputtering system.

[40%]

(b) Define the term sputtering yield in reference to rf magnetron sputtering.

[5%]

(c) Sketch graphs showing how the sputtering yield varies as a function of each of the following factors:

angle of incidence of the sputtering ions;

energy of the sputtering ions.

Why is argon gas most commonly used for sputtering metals?

[25%]

(d) What type of intrinsic stress would you normally find in sputtered films? Justify your answer. Why could a high intrinsic stress be a problem for the production of MEMS devices?

[20%]

(e) A lift-off technique is to be used for patterning a 200 nm thick layer of aluminium on the surface of a silicon wafer. Explain why it would be preferable to use evaporation for the deposition of the aluminium layer rather than sputtering.

[10%]

3 (a) Describe the process by which two silicon wafers may be joined together by direct (fusion) bonding. Why is wafer bonding important for the fabrication of MEMS devices? Give an example of a real MEMS device whose fabrication includes wafer bonding to illustrate your answer.

[40%]

(b) Fig. 2 shows a simple field emission device consisting of a layer of glass 500 μ m thick sandwiched between two highly n-type silicon wafers. The glass contains a hole of 1 mm diameter on one side of which is a bare silicon surface and on the other is a bare silicon surface that has, at its centre, a small array of sharp silicon tips that are 3 μ m high and ~6 μ m in diameter at their base. This cavity is filled with a vacuum such that, when a high voltage is applied between the two silicon wafers of the appropriate polarity, an electron field emission current flows from the silicon tips to the top silicon wafer. Describe a process flow for the fabrication of this device, assuming that the glass has been supplied to you with the 1 mm hole already drilled into it.

[60%]

Fig. 2

4 (a) With the aid of diagrams, describe the following photolithographic printing techniques. In each case you should explain what limits the critical dimension and suggest general situations under which it is appropriate to use each technique:

proximity printing; contact printing; projection printing.

[45%]

[15%]

- (b) (i) Explain the procedure for defining patterns by *microcontact printing*. What advantages does this technique have over photolithography other than lower cost?
 - (ii) Describe the process flow for producing a PDMS stamp to be used in microcontact printing. [20%]
 - (iii) Under what circumstances is reducing processing cost particularly important for economically viable MEMS device manufacture? Illustrate your answer by giving an example of a type of MEMS device that you think would be particularly suited to microcontact printing. [20%]

END OF PAPER

Materials & Processes for Microsystems

Data Book 2005 Edition

http://www2.eng.cam.ac.uk/~ajf/4M6/

CONTENTS

2	CONTENTS
_	

2	SECTION 1	MATERIAL	PROPERTIES
.)	SECTION I	: IVIA I ERIAL	. PROPERTIES

- 3 1.1 Crystalline silicon
- 4 1.2 Hydrogenated amorphous silicon
- 4 1.3 Polycrystalline diamond
- 5 1.4 Polycrystalline silicon
- 5 1.5 Silicon dioxide
- 6 1.6 Silicon nitride

7 Section 2: Common Formulae & DATA

- 7 2.1 Doping
- 7 2.2 Thermal crystallisation
- 7 2.3 Thermal evaporation
- 8 2.4 Sputtering
- 8 2.5 Electroplating
- 8 2.6 Elastic moduli
- 9 2.7 Piezoelectricity
- 9 2.8 Piezoresistivity
- 10 2.9 Microscopy
- 10 2.10 The Stoney equation
- 10 2.11 X-ray diffraction
- 10 2.12 UV-visible spectrometry
- 11 2.13 Fourier transform infrared spectrometry
- 11 2.14 Photolithography
- 13 2.15 Etching

SECTION 1: MATERIAL PROPERTIES

1.1 CRYSTALLINE SILICON (C-SI)

Property	Value
Atomic weight	28.1
Atomic density	$5 \times 10^{28} \text{ m}^{-3}$
Band gap at 300 K	1.12 eV
Chemical resistance	High (resistant to most acids and some bases)
Density	2400 kg m ⁻³
Dielectric constant	11.8
Dielectric strength	3×10 ⁸ V m ⁻¹
Electron mobility	$0.150 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
Fracture strength	6 GPa
Hole mobility	$0.040 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
Intrinsic carrier concentration	1.45×10 ¹⁶ m ⁻³
Intrinsic resistivity	$2.3\times10^3\Omega$ m
Knoop hardness	850 kg mm ⁻²
Lattice constant	0.543 nm
Linear coefficient of thermal expansion at 300 K	2.6×10 ⁻⁶ K ⁻¹
Melting point	1688 K
Minority carrier lifetime	2.5×10^{-3} s
Poisson ratio	0.22
Relative permittivity	11.8
Specific heat at 300 K	713 J kg ⁻¹ K ⁻¹
Thermal conductivity at 300 K	156 W m ⁻¹ K ⁻¹
Tempertaure coefficient of the Young	90×10 ⁻⁶ K ⁻¹
Modulus at 300 K	
Thermal diffusivity	$0.9 \times 10^{-4} \text{ m}^2 \text{ s}^{-2}$
Yield strength	7 Gpa
Young modulus	190 GPa

1.2 HYDROGENATED AMORPHOUS SILICON (A-SI:H)

Property	Value
Activation energy of conduction at	0.7 - 0.8 eV
300 K	_
Chemical resistance	Fairly high (resistant to most acids and
	some bases)
Compressive Stress	-1 – 0.5 GPa
Dark conductivity	$10^{-9} - 10^{-8} \Omega^{-1} \text{ m}^{-1}$
Defect density	$10^{22} \mathrm{m}^{-3}$
Electron mobility	10 ⁻⁴ m ² V ⁻¹ s ⁻¹
Hole mobility	$2 \times 10^{-6} \mathrm{m}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}$
Hydrogen content	5 – 15 at. %
Optical (Tauc) gap	1.75 – 1.85 eV
Photoconductivity	$10^{-3} - 10^{-3} \Omega^{-1} \mathrm{m}^{-1}$
Photosensitivity	106
Poisson ratio	0.25
Refractive index	3.5 – 3.8
Urbach energy	50 – 60 meV
Young modulus	130 – 160 GPa

1.3 POLYCRYSTALLINE DIAMOND

Property	Value
Breakdown strength	10 ⁹ V m ⁻¹
Density	3500 kg m ⁻³
Dielectric constant	5.5
Electron mobility	$0.22 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
Energy gap	5.5 eV
Hole mobility	$0.16 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
Knoop hardness	10 ¹⁰ kg m ⁻²
Melting point	4000° C
Thermal conductivity	2000 W m ⁻¹ K ⁻¹
Thermal expansion coefficient	8×10 ⁻⁸ K ⁻¹
Yield strength	53 GPa
Young modulus	1035 GPa

1.4 POLYCRYSTALLINE SILICON (POLY-SI)

Property	Value
Density	2320 kg m ⁻³
Dielectric constant	4.2
Electron mobility	$(3-60)\times10^{-3} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
Fracture strength	0.8 – 2.84 GPa
Poisson ratio	0.23
Refractive index	4.1
Residual stress	Compressive
Thermal conductivity	$30 - 70 \text{ W m}^{-1} \text{ K}^{-1}$
Thermal expansion coefficient	2.8×10 ⁻⁶ K ⁻¹
Young modulus	160 GPa

1.5 SILICON DIOXIDE (A-SIO)

Property	Value
Band gap at 300 K	9 eV
Density	2200 kg m ⁻³
Dielectric constant	3.9
Dielectric strength	10 ⁹ V m ⁻¹
Etch rate in buffered HF	100 nm min ⁻¹
Melting point	~1600° C
Poisson ratio	0.20
Resistivity	$10^{12} - 10^{14} \Omega \text{ m}$
Refractive index	1.46
Residual Stress	~350 MPa (Compressive)
Thermal conductivity	1.4 W m ⁻¹ K ⁻¹
Thermal expansion coefficient	0.35×10 ⁻⁶ K ⁻¹ (Thermal) 2.3×10 ⁻⁶ K ⁻¹ (PECVD)
	2.3×10 ⁻⁶ K ⁻¹ (PECVD)
Young modulus	70 GPa

1.6 SILICON NITRIDE (A-SIN)

Property	Value
Band gap at 300 K	5.3 eV
Density	3440 kg m ⁻³
Dielectric constant	7.5
Dielectric strength	10 ⁹ V m ⁻¹
Etch rate in concentrated HF	20 nm min ⁻¹
Etch rate in buffered HF	1 nm min ⁻¹
Hydrogen content	4 – 8 at. % (LPCVD)
	20 – 25 at. % (PECVD)
Melting point	3440° C
Poisson ratio	0.27
Resistivity	$10^{12} - 10^{14} \Omega \text{ m}$
Refractive index	2.01
Thermal conductivity	19 W m ⁻¹ K ⁻¹
Thermal expansion coefficient	1.6×10 ⁻⁶ K ⁻¹
Yield strength	6.9 Gpa
Young modulus	380 GPa

SECTION 2: COMMON FORMULAE & DATA

2.1 DOPING

For the case of an infinitely deep medium where $C \rightarrow 0$ as $x \rightarrow \infty$ and there is a constant concentration of impurities at the surface as a function of time, C_s, then the solution to the diffusion equation is

$$C(x,t) = C_s \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$
 (2.8)

For ion implantation, dopants are implanted with a Gaussian distribution,

$$N_i(x) = \frac{Q_i}{\Delta R_p \sqrt{2\pi}} \exp \left[\frac{-1}{2} \left(\frac{x - R_p}{\Delta R_p} \right)^2 \right]$$
 (2.9)

2.2 THERMAL CRYSTALLISATION

For a material undergoing thermal crystallisation, the nucleation rate of crystallites is given by

$$N \propto \frac{1}{T} \exp \left[\frac{-\left(E_d + \Delta G_n^*\right)}{kT} \right]$$
 (3.5)

Once nucleated, crystals grow with a velocity given by
$$v \propto \exp\left[\frac{-\left(2E_d - \Delta G'\right)}{2kT}\right] \qquad (3.6)$$

2.3 THERMAL EVAPORATION

For a material undergoing thermal evaporation, the flux of atoms evaporating per second, F, is given by

$$F = N_0 \exp\left(\frac{-\Phi_e}{kT}\right)$$
 (5.1)

where N_0 is a slowly varying function of temperature and Φ_e is the activation energy required to evaporate one molecule which is related to the enthalpy of formation of the evaporant, H, by

$$\Phi_e = \frac{H}{N_A} \tag{5.2}$$

The deposition rate at a distance d from the source is

$$R \sim \frac{\cos \beta \cos \theta}{d^2} \tag{5.3}$$

2.4 Sputtering

The Sigmund expression for sputter yield is

$$S \propto \frac{eE}{Ua\{M_i/M_i\}} \tag{5.4}$$

where U is the heat of sublimation of the target material, a is a near linear function of (M_i/M_t) , M_i is the ion mass, M_t is the target atom mass, E is the ion energy and e is the momentum transfer function which for elastic collisions is given by

$$e = \frac{4M_{i}M_{i}}{(M_{i} + M_{i})^{2}}$$
 (5.5)

2.5 ELECTROPLATING

From the Faraday Law of electrolysis, the mass of metal deposited per unit area per unit time, M, is given by

$$M = \frac{JA}{zF} \tag{5.11}$$

where, assuming 100% current efficiency, J is the current density *due to metal ions*, A and z are the atomic weight and valency of the metal respectively and F is the Faraday constant, which is 96500 C.

2.6 ELASTIC MODULI

For an anisotropic *cubic* material, we may still calculate the Young modulus in an arbitrary crystallographic direction from the compliance coefficients,

$$E = \frac{1}{S_{11} - \left(2S_{11} - 2S_{12} - S_{44}\right)\left(l_1^2 l_2^2 + l_2^2 l_3^2 + l_1^2 l_3^2\right)}$$
 (6.8)

Additionally, we may gain an estimate of the Young modulus for a polycrystalline cubic material from the complaince coefficients by averaging equation (6.8) over all directions

$$\overline{E} \approx \frac{1}{0.6S_{11} + 0.4S_{12} + 0.25S_{44}}$$
 (6.9)

The Poisson ratio for any normal plane in an anisotropic cubic material is

$$v = -E \left[S_{12} + \left(S_{11} - S_{12} - \frac{S_{44}}{2} \right) \left(l_1^2 m_1^2 + l_2^2 m_2^2 + l_3^2 m_3^2 \right) \right]$$
 (6.11)

The Shear modulus is dependent on the Young modulus and Poisson ratio

$$G = \frac{E}{2(1+\nu)}$$
 (6.22)

The Bulk modulus is given by

$$K = \frac{E}{3(1 - 2\nu)} \quad (6.27)$$

2.7 **PIEZOELECTRICITY**

For piezoelectric materials,

$$D = d\sigma + \varepsilon_0 \varepsilon_r \Big|_{\sigma} E \qquad (6.33a)$$

$$D = e\varepsilon + \varepsilon_0 \varepsilon_r \Big|_{\varepsilon} E \qquad (6.33b)$$

and the electromechanical coupling coefficient is given by

$$k = \sqrt{\frac{de}{\varepsilon_0 \varepsilon_r \Big|_{\sigma}}} \quad (6.35)$$

2.8 **PIEZORESISTIVITY**

For piezoresistive materials, the Ohm Law becomes $\mathbf{E} = [\mathbf{\rho}_e + \mathbf{\Pi} \cdot \mathbf{\sigma}] \cdot \mathbf{J}$ (6.38)

$$\mathbf{E} = [\boldsymbol{\rho}_{e} + \boldsymbol{\Pi} \cdot \boldsymbol{\sigma}] \cdot \mathbf{J} \tag{6.38}$$

For a cubic material, such as silicon, once again the situation is simplified. The resistivity term becomes a simple scalar. We use the same numbering system for the stress tensor, so that

$$[x, y, z, yz, zx, xy] \Leftrightarrow [1,2,3,4,5,6]$$
 (6.39)

The field-current relationships, given the symmetry of the cubic system, become

$$\frac{E_{x}}{\rho_{e}} = \left[1 + \pi_{11}\sigma_{x} + \pi_{12}(\sigma_{y} + \sigma_{z})\right]J_{x} + \pi_{44}(\tau_{xy}J_{y} + \tau_{xz}J_{z})$$

$$\frac{E_{y}}{\rho_{e}} = \left[1 + \pi_{11}\sigma_{y} + \pi_{12}(\sigma_{x} + \sigma_{z})\right]J_{y} + \pi_{44}(\tau_{xy}J_{x} + \tau_{yz}J_{z}) (6.40)$$

$$\frac{E_{z}}{\rho_{e}} = \left[1 + \pi_{11}\sigma_{z} + \pi_{12}(\sigma_{x} + \sigma_{y})\right]J_{z} + \pi_{44}(\tau_{xz}J_{z} + \tau_{yz}J_{y})$$

Where the three independent coefficients from the fourth rank piezoresistive tensor are

$$\rho_e \pi_{11} = \Pi_{1111}$$

$$\rho_e \pi_{12} = \Pi_{1122} \quad (6.41)$$

$$\rho_e \pi_{44} = \Pi_{2323}$$

Change in resistance due to the piezoresistivity effect is given by

$$\frac{\Delta R}{R} = \pi_l \sigma_l + \pi_t \sigma_t \qquad (6.42)$$

Where σ_l and σ_t are the longitudinal and transverse stress and π_l and π_t may be determined from the piezoelectric coefficients using the transformation

$$\pi_{l} = \pi_{11} - 2(\pi_{11} - \pi_{12} - \pi_{44})(l_{1}^{2}l_{2}^{2} + l_{1}^{2}l_{3}^{2} + l_{2}^{2}l_{3}^{2}) \quad (6.43a)$$

$$\pi_{t} = \pi_{12} + (\pi_{11} - \pi_{12} - \pi_{44})(l_{1}^{2}t_{1}^{2} + l_{2}^{2}t_{2}^{2} + l_{3}^{2}t_{3}^{2}) \quad (6.43b)$$

2.9 MICROSCOPY

For a simple optical system comprising an objective and condenser, it can be shown that the resolving power is given by

$$\delta = \frac{C\lambda}{\eta \sin \alpha} \qquad (8.2)$$

In an electron microscope, the electron wavelength is given by the de Broglie equation,

$$\lambda = h/p \tag{8.3}$$

2.10 THE STONEY EQUATION

The Stoney equation states that

$$\sigma = \frac{E}{6(1-\nu)} \frac{t_s^2}{t} \left(\frac{1}{R_c} - \frac{1}{R_0} \right)$$
 (8.7)

2.11 X-RAY DIFFRACTION

The Bragg equation for diffraction states that constructive interference will only occur when

$$n\lambda = 2d\sin\theta$$
 (8.8)

For a given set of planes $(b \ k \ l)$ in a cubic unit cell with side lengths a, b and c, the plane separation in equation 8.8 will be given by

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$
 (8.9)

The structure factor, Fhkl, the modulus of which gives the amplitude of the wave diffracted by a particular set of planes, and is given by

$$|F_{hkl}| = \sum_{1}^{N} f_n \exp[2\pi j(hu_n + kv_n + lw_n)]$$
 (8.10)

Table 4.1 Diffraction peaks observed and not present in some common bravais lattices.

Bravais lattice	Diffraction present	None h and k mixed $(h + k + l)$ odd h , k and l mixed
Simple	All	None
Base centred	h and k not mixed	h and k mixed
Body centred	(h+k+l) even	(h+k+l) odd
Face centred	h, k and l not mixed	h, k and l mixed

2.12 UV-VISIBLE SPECTROMETRY

The absorption coefficient, α , of a material may be determined as a function of photon energy,

%T =
$$(100 - \%R) \exp(-\alpha t)$$

$$\alpha = \frac{-1}{t} \ln\left(\frac{\%T}{100 - \%R}\right)$$
(8.13)

2.13 FOURIER TRANSFORM INFRARED SPECTROMETRY

The size of the absorption peaks provide a rough guide to elemental composition (±1 at. %),

$$C = -K_A \int \frac{\ln(\%T/100)}{kt} \partial k \qquad (8.14)$$

Wavenumber (cm ⁻¹)	Bond	Vibrational mode type
460	Si-O ₂	Rock
630	SiH	Bend
630	Si-H-	Rock
630	SiH ₂	Rock
630	SiH2	Wag
805	Si-O ₂	Bend
820	SiH ₂	Twist
840	SiN	Stretch
860	Si—H ₂	Bend
880	Si-H ₂	Bend
905	Si—H ₂	Bend
920	SiO	Stretch
1080	Si—O ₂	Stretch
1150	N—H	Bend
2000	Si—H	Stretch
2090	Si—H ₂	Stretch
2140	SiH ₂	Stretch
3350	N-H	Stretch

2.14 PHOTOLITHOGRAPHY

The empirical expression for photoresist thickness is

$$t = \frac{KC^{\beta}\eta^{\gamma}}{R^{\alpha}} \qquad (9.2)$$

where C is the polymer concentration in g per 100 ml, h is the intrinsic viscosity, R is the number of rotations per minute, K is a calibration constant and α , β and γ are resist-dependent constants.

For positive resists, contrast is given by

$$\gamma = \frac{1}{(\log D_P - \log D_P^0)} = \left[\log \frac{D_P}{D_P^0}\right]^{-1}$$
 (9.3)

whilst for negative resists

$$\gamma = \frac{1}{(\log D_g^0 - \log D_g^i)} = \left[\log \frac{D_g^0}{D_g^i}\right]^{-1}$$
 (9.4)

The resolution for shadow printing using a conventional resist of thickness z and with a print gap between the mask and the resist surface of s is given by

$$R = \frac{3}{2} \sqrt{\lambda \left(s + \frac{z}{2}\right)} \tag{9.5}$$

whilst for a projection printing system,

$$R = \frac{k_1 \lambda}{N} \tag{9.6}$$

where

$$N = n \sin \theta_{\text{max}} = \frac{D}{2F} \quad (9.7)$$

2.15 ETCHING

	Eich Rales for	Microma	chiming	and IC P	roceusin	(Albah	9).	t. 4.4	29 July	1996	· · · · · · · · · · · · · · · · · · ·	45-1-1-1	10000	sub secs	10 1000		
And the state of t	U.C. Berkeley M The top etc	iensfabric	tion Lab	onelony /	Berkeley whor wh	Senane &	Actuatos Matirase o	Conter l	Kin R. V	/illans		20 x 20 x	No Transmi	A69-47	Sec.		
The center and bottom values are the lo	wand high eich re	tes obsets	ed by the	author at	n) others	in the UC	CB Micro	ab using	fresh and	used solu	tions, clea	n and "dir	ty cham	ters, esc.	A. 7.2		
N. C. T. N. E.							· —	 	MAT	ERIAL	ļ		<u> </u>				
EQUIPMENT	TARGET	SC Si	Puly	Poly	Wet	Dry	LTO	PSG	PŞG	Stoic	Low-o	ΑV	Spent	Sput	Sput	OCG	k
PONDITIONS ::	MATERIAL	<100>	n.	undop	Ox 23k	Ox.	under >14k	unani P	annid	Nitrid 140	Nimid 52	2% Si 42	Tune:	- Ti	TVW.	820PR	
ortografic() (19%) Wer Sink Room, Temperature	oxides		-		18k						30	0	1	1	****	1000	
HB.	Silicon	<u> </u>	7	0	23k 230	230	340	15k	4700	11	3	2500	0	i ik.	<70	0	ŧ
Washi.	oxides	ĺ		-				("		2500 12k				. 6	1
Notes Temperature	Silicon		0	0	97	95	150	w	1500	6	1	W	0		-	0	1
W4 Shit Room Ferryersture	oxides														ĺ.,	1 3	1
814	Silicon		9	2	1000	1000	1200	6800	4400	9	4	1400	<20	F	1000	Ö	1
Wei Slick Rosen Temperature	nxides				900 1080				3500 4400		3 4	ľ	0.25		l	े	1
osoboed Acid (85%)	Silicon		7	•	0.7	0.8	<1	37	24	28	19	9800	-		-	550	1
increed Bath with Reflux	nitrides		}						24	28 42	19 42						1
Bette Bahan (126 HNO ₃ : 60 H ₂ O : 5 NH ₄ F)	Silicon	1500	3100	1000	87	w	110	4000	1700	2	3	4000	130	3000	•	Q	1
Vet See Roose Emperature			1200 6000	ĺ											ļ	1	1
JH (1 KOH : 2 H ₂ O by weight)	<100> Silkon	14k	>10k	P	77		94	w	380	0	0	F	0	·		F	1
Head Street Bath					41 77												1
tembran Eschart Type A (16 H _j PO ₄ : 1 HNO ₃ : 1 HAc: 2 H ₂ O)	Alumnium		<10	49	0	0	0	·	<10	0	2	6600		0	•	0	1
Heated Buth 90°C												2600 6600	,.			1	1
Hanking Eschaet (20 H ₂ O : 1 H ₂ O ₃ : 1 HP)	Titanium		12	·	120	w	W	W	2100	8	4	W.	0	8800	-	g	1
We See Rose Temperature													<10			_ 2	
(O. COS)	Tungstee		0	0	0	0	0	0	0	0	0	<20	190	0.	60	4	1
Was Saik Loora Temperature													190 1900		150		1
maha (-50 fl.SO, 1 l H ₂ O ₂)	Cleaning of		0	0	0	0	0		0	0	0	1800	•	2400	,	P	T
Vested Butt	metals and organics																1
W.S.	Photoresist		0	0	0	0	0	-	0	0	ß	0		0	-	>41k	T
Raiss Temperature		Ĺ															1
P_+CHP_+He (90:30:120 sccm)	Silicon	W	1900	2100	4700	W	4500	7300	6200	1800	1900	·	W	W	W	2200	f
Lam 590 Planna 450W; 2.87, gap=0.38cm, 13.56MHz	oxides		1400 1900	1500 2100	2400 4800			3000 7300	2500 7200							<u> </u>	1
P_+CHP_+H6 (90:30:120 seem)	Silicon	W	2200	1700	6000	w	6400	7400	6700	4200	3800	·	w	₩	W	2600	T
East 590 Plaims 850W, 2.8T, gap=0.38cm, 13.56MHz	oxides		2200 2700	170(i 2100	2500 7600		6000 6000	5500 7400	5000 6700	6800						2600 6700	1
F_+He ([3:1] scrm)	Silicon	300	730	670	310	350	370	610	480	820	630		W	W	W	690	Ī
Tectades PH IIA Plasma 100W, 250mT, par-2.6cm, 50kHz sq. wave	nitrides	300 1000	730 800	670 760					230 480		550 800				[]	690 830	L
F,+CHP,+He (10:5:10 secm)	Silicon	1100	1900	W	730	710	730	W	900	1300	1100	•	W	W	W	690	F
Technics PE II-A Plasma 200W; 250mT, gap-2.6cm, 50kHz sq. wave	nátrides	1							ŀ				. 1	. 1			1
F_+He (175:50 sccm)	Thin	W	6400	7000	300	w	280	530	540	1300	870		W.	W	W	1500	T
Lam 480 Plasma 450W, 375mT, gap=1,35cm, 13.56MHz	silicon nitrides			2000 7000	220 400		l			830 2300						1300	1
P _e tHa (17\$50 scon)	Thick	w	8400	9200	800	w	770	1500	1200	2800	2100	•	W	W	W	3400	Ī
Land 480 Pinums 250W, 375mT, gap=1.35cm, 13,56MHz	alticon nitrides									2100 4200						3100 3400	I
P _e (25 sccm)	This	W.	1700	2800	1100	W	1100	1400	1400	2800	2300	·	W	W	.W.	3400	ľ
Tegal Inline Plasma 701 125 W. 200mT, 40°C	silicon nitrides				1600					2800 2800						2900 3400	1
P.4CHF.4He (45:15:60 seem)	Si-rich	w	350	360	320	W	320	530	450	760	600		W	W	w	400	ľ
Tegs Inline Planna 701 1009, 300mT, 13.56MHz	silicon nitrides	ľ				, 1					1						I
1,+Ha (180400 accro)	Silicon	W	5700	32(X)	8	•	60	230	140	560	530	w	W		•	3000	r
Eain Rightow 4420 Pisema 275W, 425mT, 40°C, gup=0.80cm, 13.56MHz		5000	3400 6300	3200 3700	380											2400 3000	ı
BriCL (Al70 scen)	Silicon	W	450	460	4	-	0	0	a	870	26	w	W			350	Γ
Lam Estabow 4420 Placena 200W, 300mT, 40°C, gap=0.00cm, 13.56MHz			450 740		10		.		1		,			. [350 500	
1,+BC1,+CHC1,+N, (30:50:20:50 secm)	Aluminum	W	4500	W	680	670	750	.M.	740	930	860	6000	w			6300	٦
Lim 690 RTB 250W; 250mT; 60°C; 13.56MHz												1900 6400	- 4		1	3700 6300	ŀ
F _a (NO sccsa)	Tungsten	w	5800	5400	1200	W	1200	1800	1500	2600	2300	- V.	2800	W	W	2400	۲
Tegal Bulline Plasma 701 2009/, 150m T, 40°C, 13.56MHz					2000 2000						1900		2800 4000			2400 4000	١
(51 eccm)	Descumming	-	0	0	0	0	. 0	0	0	0	0	0	0	0		350	٢
Technics PE II-A Plasma	photoresist																
309, 300nT, gap=2.6cm, 50kHz sq. wave (51 seem)	Ashing		0	0	0	0	0	0	0	0	0	0.	9	- 0		3400	1
Technici PE II-A Plasma	Photoresist	1													1		l
40079, 300mT, pap=2.6cm, 50klfz sq. wave P Vapor	Silicon	٠.	0	0	660	w	780	2100	1500	10	19	A	0	Α.		P D	ŀ
I can eyer plastic dish	oxides	ľ							"				. [ľ
Room teroperature and pressure	Silicon	4600	1900	18(X)	0		0	0	0	120	2	6	800	290		0	-
Simple custom vacuum chamber		2900	1100 2500	1100 2300						120	0		440	50	- 1		1

Notation - efficient performed, W-not performed, but known to Work (> 100 A/min); P-not performed, but known to be Fast (> 10 kA/min);

Rates measured are counded to two algolificant figures.

then same he all of a 4-lach water for the transparent three and half of the water for single-crystal cilicon and the metals.