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1 (a) Use suffix notation to find alternative expressions for
@) ax (b X (ax c)) [20%]
(ii) (axb)x(axc) [20%]
where a, b and ¢ are constant vectors.

Discuss the circumstances under which these two quantities can be equal. [10%]

(b) A closed surface Sj lies inside another closed surface S,. Explain carefully
how the divergence theorem can be applied to the volume V lying between these two
surfaces. [15%]

Hence show that the integral
[[(vx£)-aa

has the same value when taken over surface Sj or surface S,, where f is any vector

function of position. [35%]



2 (a) The integral

a,
I= [F@,y,x)dx
0

where @ is denoted »’, is to be minimised by choosing the appropriate function y(x).
x

Explain briefly how this leads to a differential equation which y(x) must satisfy, and
find the form of the boundary condition which must be satisfied at x = a if the value of y
is not constrained there. [30%]

(b) A frictionless wire lies in a vertical plane which connects two points A and
B, A being higher than B. The point A is fixed at the point x =0, y =0, while the point
B can lie anywhere on the vertical line x = a. A particle of mass m slides down the wire
under the effect of gravity, starting from rest at the point A. The shape of the wire has
the form y(x), where x is the usual horizontal Cartesian coordinate and y is measured
vertically downwards. The shape y(x) is to be found which minimises the time taken

for the particle to reach B.

(i)  Show that the function y(x) must minimise the integral

a 2
1= [
0 Y
and find the boundary condition which must be satisfied at x = a. [30%)]

(ii) Using a first integral of the Euler-Lagrange equation, show that the
curve y(x) must have the parametric form

x=b(20-sin20)+x),  y=>b(1-cos26)

where b and x are constants. Determine the values of these constants, and
hence find the distance y(a). [40%]
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3 (a) Explain how equations of the form

a(x,y,u)g—: + b(x,y,u)g—z = c(x,y,u)

can be solved by integrating along characteristic lines. [20%]

(b) The function u(x, y) satisfies the equation

ou _y ou
— + xeV —

= u for x>0 and for all y.
dx dy Y
If u(0,y)=e”, show, by integrating along characteristic lines, that u is given by

x2
u = ex+y—7ex . [40%)]

(c) Explain carefully, with the aid of a sketch, for which part of the domain x >0
this solution is valid. [20%)]

(d) The domain is reduced to the quadrant x>0 and y > 0. Determine u(x,0) to

make the solution

for the same region as part (c), and u = 0 elsewhere within the quadrant. [20%]



4  (a) Derive the general representation theorem

du(x) o
n

dG(x,
ulxg) =[Gt @av + ju(z)—ai@ds - [owan ™
S

14 N

where u(x) is a solution of the Poisson Equation

Vi = f(x)

in a region V, which is surrounded by the surface S, and where G()_C, 50) is a Green

Function. Explain how this representation theorem is used to derive solutions for u
which satisfy the boundary condition # = U(x) for x on the boundary S. [25%]

(b) Show that the Green Function for the half-space problem

V4 = 0 forz>0forallx and y,

with u(x, y,0)=U(x, ), can be written

Glx,xy) = arx~ x| ¥ 47l - x|

for a suitable value of x;. [15%]

(c) Hence show that

o0 o0

Z, Ulx,
ulzg) = | ji . (‘y)z 7 ey [40%)]
e [ ]

(d) Explain why u is much smaller in magnitude, at large distances from the plane
z =0, than v, where v is the solution to

Vi = 0 for z > 0 for all x and y,

ov(x,,0)

% =U(x,y). [20%]

with
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Suffix notation

—_
=%
Il
—_—
—
i
~

0 if any two of i, j,k are equal
2 gjx =11 if (§jk) is a permutation of (123)
\=1 if (ijk) is a permutation of (321)

3 [xxyl =gpxjyk

4 EixEiim = 010jm — om0y

;
-
a .. M; My,
6 d . = 1 d = L 9 1 =&
[grad ¢], . iva . [curl u], =& %,

where ¢ is any scalar field and u is any vector field.

Integral theorems

7  Divergence theorem in general form:
d . .
j j j g(anythmg) dv = j j (anything) dA;
1% ! S

where V is a volume enclosed by a surface §, and (anything) denotes any legal
suffix notation expression. The integration element dA denotes the vector
element of area: it can also be written n dA, where n is the outward-pointing
unit normal vector to the surface S, and dA is the scalar element of area on that

surface.
8 Stokes’s theorem in general form:
J ) _
-[ -[ Eijk E (anythmg) dA; = d (anythmg) dl,
S J C

where S is a region of (possibly curved) surface with a curve C running around
the boundary, and (anything) denotes any legal suffix notation expression.
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Variational methods

9  To minimise [= jF(y, y’,x) dx where F is any function of y(x) and its derivative,

0
and x, I must satisfy the Euler-Lagrange equation
F _ im_ 0
o dxloy

at all positions x.

10  First integrals of the Euler-Lagrange equation:

If F depends on y’ but not on y, then % = constant.
If F does not depend explicitly on x (i.e. only depends on x via y and y’) then
F- y'a—F, =constant.

11 Rayleigh’s principle : for a linear vibrating system with potential energy V and
. 2% . . . vV .
kinetic energy w“T for harmonic motion at frequency w, the quotient F 1s

stationary with respect to small perturbations when the motion is a normal mode,
and its value is then equal to the squared natural frequency of that mode.

Partial Differential Equations

12 Classification : The second order quasi-linear partial differential equation

2 2 2
aa ?+2b ou +ca L;+F x,y,u,—aﬁ,gbi =0
ox oxdy oy ox dy
is: hyperbolic ~ where b*> —ac >0
parabolic where b> —ac=0
elliptic where b*—ac<0

13 Well-posed problem: a problem is well-posed if the solution
(i) exists
(i) is unique
(iii) depends continuously on the input data (i.e. is stable to changes in the
input data)
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14  Common reference equations are:

Helmoltz Equation Vou+ku =0

Poisson Equation Viu=f(x,y)

Laplace Equation Viu=0

2
Wave Equation —‘;—l; -c*Vu=0
e . ou )

Diffusion Equation 5 Vu=0

The form of the Laplacian operator V? in various co-ordinate systems can be found

in the Maths Data Book.
15 D’Alembert travelling wave solution: the solution of

2
gt ngztx for t > 0 and for all x
with initial conditions  u(x,0) = #(x) and a—"(x,o) = Yx)

ot

is u(x,t) = —[¢(x+ct)+¢(x )] + —XT;//({.’)de

16  Fundamental solution (Free-space Green’s function):

2-D Poisson/Laplace Equation

Violsm)=8l-5)  Glnx)=s ln|x-x|
T
3-D Poisson/Laplace Equation
ViG(z)=8-x,)  Gloxg)=-——
am| x—x, |

Fundamental solution:
Diffusion Equation

oF o*F
= —2—5(x x0)o(t—19)

2

1 (x-—xo)
Flx,t;xp,tp )= ——————exp ———|for t>1¢
(s5x0:10) 1/4&7[0—1‘0) V[ 4a(t—to)] 0

3-(space) D Wave Equation

2
F 22 = 5 10)x - x0)
a2
t—to—MJ
C
F(x.t;x0.0)= 5 for 1> 1
4me’|x~x0
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