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Friday 9 May 2008 9to 10.30

Module 4M13

COMPLEX ANALYSIS AND OPTIMIZATION
Answer not more than three questions.

The questions may be taken from any section.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachment:
4M13 datasheet (4 pages).

Answers to Sections A and B should be tied together and handed in separately.
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printed on the subsequent pages of this

question paper until instructed that you
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SECTION A

1 (a) Suppose that a function f'is differentiable in a domain S, apart from a finite

set of poles, and has no zeros or poles on dS, a boundary of S. A zero of f has order k at
a point z; if, in addition to f(zy) =0, the first k1 derivatives of falso vanish at z;,

but £®)(z,) #0. Show that

(i) If f has a zero of order k at z;, then f’/f has a pole there with

residue k. {30%]
(i) If f has a pole of order m at z,, then f’/f has a pole there with
residue —m. [30%]

(b) Hence show that

J(@) (z)

j =N-P
2mi f(z)

where N and P are respectively the number of zeros and poles of f inside S, each
counted according to its order. [25%]

(¢) Verify the above formula for the polynomial 4z% —1 where S is the unit
circle. [15%]



2 Calculate the following integrals:

]f xsin(zx)

(a) LR

[50%]

) [————dx forb>-1. [50%]

T
-(I; 1+ beos? x)

(TURN OVER



SECTION B

3 A body of water of breadth b is to be crossed by a multi-span suspension bridge.
The designer hopes to determine the span length L and cable dip d, as shown in Fig. 1,
that will give the minimum cost for the whole crossing of » spans, where b =nL. For
preliminary design the total cost of the bridge is assumed to have only two variable
components: the cost of the suspension cables and the cost of the towers. The cost of the
cables is taken to be directly proportional to the volume of steel required. The cost of
each tower is assumed to be dominated by the cost of its subsea foundations and
therefore independent of both L and 4. The bridge deck is assumed to be subject to
continuous load w per unit length across the entire span. Relevant design and cost data
for the bridge are given in Table 1.

/LK /LNP
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L
Fig. 1

(a) If the discrete number of spans # is treated as a continuous variable equal to
b/L, show that a suitable objective function f for the cost of the bridge in terms of L

and d is
bWeope [ L2 8 (b ]
=——=| —+—d |+C —+1].
f 8o_d d 3 tower L

You can assume that the length of cable used between the anchorages on the banks and

the towers at either end of the bridge is negligible compared to that used in the spans
and that the stress in the cable is equal to design stress 0.

(b) From a starting point of L =2000m and 4 =100m execute a single step of
the steepest descent algorithm to find an improved design.

(c¢) By considering first and second-order optimality conditions find the
minimum cost design.

(cont.

[15%)]

[50%]

[20%]



5

(d) In the light of your answer to (c) comment on the performance of the

steepest descent method and the realism of the cost model. [15%]
Crossing breadth b=10,000m
Bridge deck design load w=160kNm™
Design stress for high tensile steel cable 0, =1000MPa
. 84” )
Length of cable in a single span s=LI1+—
37 )
1 2
Tension in suspension cables T = %
Unit cost of high tensile steel cable Coaple = £100,000m ™
Cost of each tower | Crower = £6.532 million
Table 1

(TURN OVER



6

4  An engineer has been asked to design a minimum weight, vertical, tubular,
cantilever column of fixed length L to support a defined vertical load P without

buckling or overstressing. The design of the column in shown schematically in Fig. 2.
The inner radius R; and outer radius R, of the column can be varied to optimize the

lp

design.

b~

TR Plan view
Side view

Fig. 2

3

The buckling load for such a column is 1’;; (Ro4 - Ri4) and the maximum load

it can withstand without overstressing is O'vﬂ:(Roz—Riz), where E and o, are

respectively the Young’s modulus and yield stress of the material from which the
column is made. The effects of self-weight can be neglected.

(a) Formulate the task of optimizing the design of the column as a constrained
minimization problem in standard form.

(b) For the case where L=2am, P=7.5X% 10_37t0'y and E=12800,, identify

the feasible region graphically. By superimposing contours of the objective function,

identify which of the constraints are active at the optimum, and thus the optimal values
of R; and R, for this design problem.

{(cont.

[10%]

[50%]



7

(c) Confirm your results to (5) by considering the possible solutions obtained
when using the Kuhn-Tucker multiplier method to solve the general case of this
optimization problem, i.e. with general values of L, P and E. [40%]

END OF PAPER



4M13
OPTIMIZATION
DATA SHEET

1. Taylor Series Expansion

For one variable:
£ = S5+ =) 6T + 2= ) R
For several variables:

F) = f&) + VD (x -5 + S x=x)THE) (x=x") + R

where
o | K7 o
a axf dx, dx,
gradient Vf(x) = | : and hessian H(x) = V(Vf(x)) = : .
of s o’f
Laxn_ axn ox, ax,f

-H( x*) is a symmetric nXn matrix and R includes all higher order terms.

2. Golden Section Method

f(x) (a) Evaluate f(x) at points 4, B, C and D.
Ax _ d-Ax
d—Ax d (b) If f(B) < f(C), new interval is 4 — C.
ij = 0.382 If f(B) > f(C), new interval is B — D.
If f(B) = f(C), new interval is either
d=1I; A-CorB-D.
I y, (c) Evaluate f(x) at new interior point. If
/ not converged, go to (b).
Ax Ax
y, B C D

4M13 1 20/10/02



3. Newton’s Method
(2) Select starting point x,,
(b) Determine search direction d, = —H(x k)_l Vf(x,)
(c) Determine new estimate x, |, = x, +d,

(d) Test for convergence. If not converged, go to step (b)

4. Steepest Descent Method
(a) Select starting point x,,

(b) Determine search direction d, = -V f(x,)

d’d
(c) Perform line search to determine step size ¢ or evaluate a, = Tk—k
) . d, H(x,)d,
(d) Determine new estimate x, , | = X, + a,d,
(e) Test for convergence. If not converged, go to step (b)
5. Conjugate Gradient Method
d/d,

(a) Select starting point X, and compute d;, = -V f(x,) and @, = —
: : dy H(x,) d,
(b) Determine new estimate x, | = X, + o, d

k
v/ ()| T
(c) Evaluate Vf(x, . )and 8, = |‘+__
k+l1 k Ivf(xk)‘
(d) Determine search direction dk = V£( ka) + ﬁkdk

T
A V()
T

dp H(xpy ) dyy

(f) Test for convergence. If not converged, go to step (b)

(¢) Determine step size @, | = —

6. Gauss-Newton Method (for Nonlinear Least Squares)

If the minimum squared error of residuals r(x) is sought:

Minimise f(x) = i 7(x) = r(x) r(x)

i=1
(a) Select starting point x,,

. o . -1
(b) Determine search direction d, = —[ J(x,) Ty (xp) 1 J(x,) Tr(xk)
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Vrl(x)T dx, T Ox

where J(x) = : =

(o5
5‘ ..

Vrm(x)T arm
éx—l co s

D
=H

(c) Determine new estimate X, | = x, +d,

(d) Test for convergence. If not converged, go to step (b)

. Lagrange Multipliers
To minimise f(x) subject to m equality constraints #,(x) = 0, i = 1, ..., m, solve the sys-
tem of simultaneous equations
VA(x") + [Vh(x") 1A =0 (n equations)
h(x*) =0 (im equations)

where A = [/11, oo /lm] T is the vector of Lagrange multipliers and

oh, oh
1 _m
dx, ox,
£ T 1 . . .
[Vh(x)] = [Vh,(x*) th(x*)J = .
oh, oh
1 m
ox. " Ox
. Kuhn-Tucker Multipliers
To minimise f(x) subject to m equality constraints #,(x) = 0,i = 1, ..., m and p inequal-

ity constraints g(x) < 0,7 = 1, ..., p, solve the system of simultaneous equations

VA + [VR() 1A + [Ve(x") 17w = 0 (# equations)
h(x*) =0 (m equations)
Vi=1,..,p, ug(x)=0 (pequations)

where A are Lagrange multipliers and p > 0 are the Kuhn-Tucker multipliers.
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9. Penalty & Barrier Functions

To minimise f(x) subject to p inequality constraints g(x) < 0,i = 1, ..., p, define -

q(x,p,) = f(x) + p, P(x)
where P(x) is a penalty function, e.g.

p
P(x) = ¥ (max[0, g(x)1)°

i=1

or alternatively
1
q(x,pp) = f(x) —EI;B(X)

where B(x) is a barrier function, e.g.
&1
B(x) = —
® = X e®

Then for successive k = 1,2, ... and p, such that p, >0 and p, | > p,, solve the prob-
lem

minimise q (X, p, )
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