Module 4F3: Nonlinear and Predictive Control Solutions 2009

J.M. Maciejowski

13 May 2009

1. (a)

(i) x_e is an equilibrium point if $f(x_e) = 0$.

- (ii) An equilibrium x_e is stable if $\forall \epsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ \|x(0) x_e\| < \delta \ \text{implies} \ \|x(0) x_e\| < \epsilon \ \ \forall t \geq 0.$
- (iii) An equilibrium x_e is asymptotically stable if it is stable and $\exists \delta > 0$ s.t. $||x(0) x_e|| < \delta$ implies $\lim_{t \to \infty} x(t) = x_e$.
- (iv) Domain of attraction of an asymptotically stable equilibrium point x_e is the set S of initial conditions s.t. if $x(0) \in S$ then $x(t) \to x_e$ as $t \to \infty$.

(b)

(i) First verify that x = 0 is an equilibrium point. Note that this is unique for $|x_i| < \alpha$, i = 1, 2, 3. It is clear that V(0) = 0.

Note that, providing that $|x_i| < \alpha$ for i = 1, 2, 3, each of the integrals appearing in V is nonnegative, and positive if $|x_i| > 0$. Thus V > 0 in some neighbourhood of 0.

$$\dot{V} = \nabla V(x)\dot{x} = \frac{\partial V}{\partial x_1}\dot{x}_1 + \frac{\partial V}{\partial x_2}\dot{x}_2 + \frac{\partial V}{\partial x_3}\dot{x}_3
= f(x_1)[-x_1 + h(x_3)] + g(x_2)[-h(x_3)] + h(x_3)[-f(x_1) + g(x_2) - h(x_3)]
= -x_1f(x_1) - h^2(x_3) \le 0$$

Choose c > 0 sufficiently small s.t. $S := \{x : V(x) \le c\} \subset \{x : |x_i| < \alpha \text{ for } i = 1, 2, 3\}$. S is a closed and bounded invariant set, hence from Lasalle's theorem for any $x(0) \in S$, $x(t) \to M$ as $t \to \infty$, where M is the largest invariant set in S included in $\{x : \dot{V}(x) = 0\}$.

$$\dot{V}(t) = 0 \Rightarrow x_1(t) = 0, x_3(t) = 0$$

If $x_2(t) \neq 0$ then $\exists \tau$ s.t. $x_3(t+\tau) \neq 0$ hence M only includes the origin.

(ii) The Jacobian is given by

$$A = \begin{bmatrix} -1 & 0 & \frac{\partial h}{\partial x_3} \\ 0 & 0 & -\frac{\partial h}{\partial x_3} \\ -\frac{\partial f}{\partial x_1} & \frac{\partial g}{\partial x_2} & -\frac{\partial h}{\partial x_3} \end{bmatrix}$$

where the derivatives are evaluated at the equilibrium point. The eigenvalues λ of A are the solutions of $|\lambda I - A| = 0$ i.e.

$$\begin{vmatrix} \lambda + 1 & 0 & -\frac{\partial h}{\partial x_3} \\ 0 & \lambda & \frac{\partial h}{\partial x_3} \\ \frac{\partial f}{\partial x_3} & -\frac{\partial g}{\partial x_2} & \lambda + \frac{\partial h}{\partial x_2} \end{vmatrix} = 0$$

which gives at the origin $(\lambda + 1)\lambda(\lambda + \frac{\partial h}{\partial x_3}) = 0$ (also follows by inspection of A since $\partial f/\partial x_1$ and $\partial g/\partial x_2$ are both zero at the origin in this case). There is hence at least one pole on the imaginary axis \Rightarrow linearization inconclusive.

(iii) Is the origin also globally asymptotically stable?

Not necessarily, e.g. other equilibria could be present for $x_i > \alpha$ depending on the form of the functions f, g, h.

Note: even if the conditions specified for f, g, h hold for all |y| > 0 the set S would not necessarily be bounded for all c > 0, hence the analysis above would not be sufficient to conclude that S is included in the domain of attraction of the origin for all c > 0 (the latter would be the case if e.g. f, g, h are additionally non decreasing functions).

2. (a) Consider $e = E \sin \theta$. If $E \le \delta$, $f(e) = e/\delta$, hence $N_1(E) = 1/\delta$. If $E > \delta$

$$N_1(E) = \frac{U_1 + jV_1}{E}$$

 $V_1 = 0$ since f(e) is an odd function.

$$\begin{split} U_1 &= \frac{1}{\pi} \int_0^{2\pi} f(E \sin \theta) \sin \theta d\theta = \frac{4}{\pi} \int_0^{\pi/2} f(E \sin \theta) \sin \theta d\theta \\ &= \frac{4}{\pi} \int_0^{\sin^{-1}(\delta/E)} \frac{1}{\delta} E \sin^2 \theta d\theta + \frac{4}{\pi} \int_{\sin^{-1}(\delta/E)}^{\pi/2} \sin \theta d\theta \\ &= \frac{4E}{\pi \delta} \int_0^{\sin^{-1}(\delta/E)} \frac{1 - \cos(2\theta)}{2} d\theta - \frac{4}{\pi} [\cos \theta]_{\sin^{-1}(\delta/E)}^{\pi/2} \\ &= \frac{2E}{\pi \delta} \left[\theta - \frac{\sin(2\theta)}{2} \right]_0^{\sin^{-1}(\delta/E)} + \frac{4}{\pi} \cos(\sin^{-1}(\delta/E)) \\ &= \frac{2E}{\pi \delta} \left[\sin^{-1}(\delta/E) - \frac{1}{2} \sin(2\sin^{-1}(\delta/E)) \right] + \frac{4}{\pi} \cos(\sin^{-1}(\delta/E)) \\ &= \frac{2E}{\pi \delta} \left[\sin^{-1}(\delta/E) - \sin(\sin^{-1}(\delta/E)) \cos(\sin^{-1}(\delta/E)) \right] + \frac{4}{\pi} \cos(\sin^{-1}(\delta/E)) \\ &= \frac{2E}{\pi \delta} \sin^{-1}(\delta/E) + \frac{2}{\pi} \cos(\sin^{-1}(\delta/E)) \\ &= \frac{2E}{\pi \delta} \sin^{-1}(\delta/E) + \frac{2}{\pi} \sqrt{1 - (\delta/E)^2} \end{split}$$

Hence $N_1(E)$ is as required.

(b) For $\delta = 1$ we have g(e) = e - f(e). So $N_2(E) = 1 - N_1(E)$, i.e.

$$N_2(E) = \begin{cases} 0, & \text{if } E \le 1 \\ 1 - \frac{2}{\pi} \left[\sin^{-1} \left(\frac{1}{E} \right) + \frac{1}{E} \sqrt{1 - \left(\frac{1}{E} \right)^2} \right] & \text{if } E > 1 \end{cases}$$

(c) f is an odd function. Therefore

$$N_1(E) = \frac{U_1}{E} = \frac{1}{\pi} \int_0^{2\pi} \frac{f(E\sin\theta)}{E} \sin\theta d\theta \ge 0$$

Also, since $f(E\sin\theta) \leq E\sin\theta/\delta$, we have

$$N_1(E) \leq \frac{1}{\pi} \int_0^{2\pi} \frac{1}{\delta} \sin^2 \theta d\theta = \frac{1}{\pi \delta} \int_0^{2\pi} \frac{1 - \cos(2\theta)}{2} d\theta = \frac{1}{\pi \delta} \left[\frac{\theta}{2} - \frac{\sin(2\theta)}{4} \right]_0^{2\pi} = \frac{1}{\delta}$$

Alternatively, a less formal argument invoking the concept of 'equivalent linear gain' is acceptable here: from the form of the nonlinearity, it is clear that $N_1(E)$ does not increase with E. Hence its largest value is that for $E \leq \delta$. Also an argument based on showing that $d\{N_1(E)\}/dE \leq 0$ could be used.

(d) $G(j\omega) = \frac{k}{(j\omega+1)^2} = k \frac{(1-j\omega)^2}{(\omega^2+1)^2} = k \frac{1-\omega^2}{(1+\omega^2)^2} - k \frac{2\omega j}{(1+\omega^2)^2}$

- (i) $\Im[G(j\omega)] = 0$ for $\omega = 0$ or $\omega \to \infty$, hence no intersections with negative real axis, therefore no limit cycle from describing function method (using (c)).
- (ii) To deduce stability from circle criterion need $\Re[G(j\omega)] > -\delta \ \forall \omega$.

$$\frac{\partial \Re[G(j\omega)]}{\partial \omega^2} = \frac{-(1+\omega^2)^2 - 2(1+\omega^2)(1-\omega^2)}{(1+\omega^2)^4} = 0 \Rightarrow -(1+\omega^2) - 2(1-\omega^2) = 0 \Rightarrow \omega^2 = 3$$

So $\min_{\omega} \Re[G(j\omega)] = -2k/16 = -k/8$. $\Re[G(j\omega)]$ is maximized when ω^2 is minimized, i.e. $\omega = 0$. So $-\frac{k}{8} \le \Re[G(j\omega)] \le k$. So need $-\delta < k < 8\delta$.

- 3. (a) If a linear model is used (as in the standard formulation of MPC), then linear inequality constraints of the form $MX \leq m$, applied to the predicted states, transform into linear inequality constraints on the predicted inputs, which are the decision variables of the optimization problem that is solved in MPC. If a convex optimization criterion is used, such as a quadratic cost (which is the standard formulation) or a linear cost (absolute values or peak values), then the resulting optimization problem is convex. Since the optimization problem has to be solved on-line, it is important to solve a convex problem if possible, since that guarantees that a solution will be found if a 'descent' search strategy is used, and that this solution will be a global optimum of the problem.
 - (b) A constraint of the form $|x^i| \leq \ell_i$ can be written as two linear inequalities:

$$x^i \le \ell_i \quad \text{and} \quad -x^i \le \ell_i$$
 (1)

which can be written as

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} x^i \le \begin{bmatrix} \ell_i \\ \ell_i \end{bmatrix} \tag{2}$$

This is now written for every predicted state in the prediction horizon:

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} x_s^i \le \begin{bmatrix} \ell_i \\ \ell_i \end{bmatrix} \tag{3}$$

for s = 1, 2, ..., N. Since x_s^i appears in the vector X, the inequalities (3) can be included in the set of inequalities $MX \leq m$ by inserting the coefficients on the left and right hand sides of (3) in the appropriate entries of M and m.

(c) Following the above, the inequality $|\dot{z}| \leq 0.01$ is written as

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \dot{z} \le \begin{bmatrix} 0.01 \\ 0.01 \end{bmatrix} \tag{4}$$

and the inequality $|z| \leq 0.1$ is written as

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} z \le \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix} \tag{5}$$

Now applying these constraints over the prediction horizon, and writing them in terms of the complete predicted state vector, gives:

(d) If x_0 is the latest measurement of the state vector, we have predictions (since N=2):

$$x_1 = Ax_0 + Bu_0 \tag{7}$$

$$x_2 = Ax_1 + Bu_1 \tag{8}$$

$$= A^2 x_0 + AB u_0 + B u_1 (9)$$

which can be written as

$$X = \begin{bmatrix} A \\ A^2 \end{bmatrix} x_0 + \begin{bmatrix} B & 0 \\ AB & B \end{bmatrix} U \tag{10}$$

where $U = [u_0^T, u_1^T]^T$. Hence the inequalities $MX \leq m$ can be expressed as

$$M\left(\left[\begin{array}{c}A\\A^2\end{array}\right]x_0+\left[\begin{array}{cc}B&0\\AB&B\end{array}\right]U\right)\leq m\tag{11}$$

- 4. (a) The question asks for the principle rather than details, so the essential ingredients that should be mentioned are
 - An internal model, used for prediction,
 - A cost function, which is minimised at each step,
 - Constraints which should not be violated,
 - The receding horizon idea,
 - New measurements bringing in feedback action.

Benefits:

- Constraints can be considered explicitly,
- Easy to understand,
- Deals easily with time delays,
- Allows operation close to constraints,
- · Adaptation easily implemented, eg by changing the model.

Disadvantages:

- On-line computational complexity,
- Lack of transparency of behaviour,

4

(b) i. From the definition of V, we have

$$V(Ax_{0} + Bu_{0}^{*}, 0) = (Ax_{0} + Bu_{0}^{*})^{T}Q(Ax_{0} + Bu_{0}^{*}) + 0 + + (A^{2}x_{0} + ABu_{0}^{*})^{T}P(A^{2}x_{0} + ABu_{0}^{*})$$
(12)
$$= (x_{0}^{T}A^{T}QAx_{0} + 2x_{0}^{T}A^{T}QBu_{0}^{*} + u_{0}^{*T}B^{T}QBu_{0}^{*}) + + (x_{0}^{T}A^{2T}PA^{2}x_{0} + 2x_{0}^{T}A^{2T}PABu_{0}^{*} + u_{0}^{*T}B^{T}A^{T}PABu_{0}^{*})$$
(13)
$$= x_{0}^{T}A^{T}(Q + A^{T}PA)Ax_{0} + 2x_{0}^{T}A^{T}(Q + A^{T}PA)Bu_{0}^{*} + + u_{0}^{*T}B^{T}(Q + A^{T}PA)Bu_{0}^{*}$$
(14)
$$= x_{0}^{T}A^{T}PAx_{0} + 2x_{0}^{T}A^{T}PBu_{0}^{*} + u_{0}^{*T}B^{T}PBu_{0}^{*}$$
(15)

where in the last line we have used the fact that $P = A^T P A + Q$ But

$$V^*(x_0) = x_0^T Q x_0 + u_0^{*T} R u_0^* + (A x_0 + B u_0^*)^T P (A x_0 + B u_0^*)$$
(16)

$$= x_0^T Q x_0 + u_0^{*T} R u_0^* + (x_0^T A^T P A x_0 + 2x_0^T A^T P B u_0^* + u_0^{*T} B^T P B u_0^*)$$
 (17)

$$= x_0^T (Q + A^T P A) x_0 + 2x_0^T A^T P B u_0^* + u_0^{*T} (R + B^T P B) u_0^*$$
 (18)

$$= x_0^T P x_0 + 2x_0^T A^T P B u_0^* + u_0^{*T} (R + B^T P B) u_0^*$$
(19)

where in the last line we have again used the fact that $P = A^T P A + Q$. Now comparing (15) and (19) we see that

$$V^*(x_0) = V(Ax_0 + Bu_0^*, 0) + x_0^T(P - A^T P A)x_0 + u_0^{*T} R u_0^*$$
(20)

$$= V(Ax_0 + Bu_0^*, 0) + x_0^T Qx_0 + u_0^{*T} Ru_0^*$$
(21)

$$> V(Ax_0 + Bu_0^*, 0)$$
 (22)

if $x_0 \neq 0$, since Q > 0 and R > 0. But

$$V^*(Ax_0 + Bu_0^*) = \min_{u \in V} V(Ax_0 + Bu^*, u) \le V(Ax_0 + Bu_0^*, 0)$$
(23)

so
$$V^*(Ax_0 + Bu_0^*) < V^*(x_0)$$
. QED

- ii. The idea is that we can use V^* (the value function) as a Lyapunov function. In discrete-time systems a Lyapunov function is one which decreases at each step, and has a minimum at an equilibrium. We have just shown that V^* has the decreasing property. Clearly we have $V(0,0)=0,\ V(x,u)>0$ if $x\neq 0$ or $u\neq 0$, and (x=0,u=0) is an equilibrium of the system. Hence $V^*(0)=0$ and $V^*(x)>0$ if $x\neq 0$. The other condition that needs to be established is the continuity of V^* —this is harder, and not covered in the course.
- iii. Consider $V(k) = x(k)^T P x(k)$. For the system x(k+1) = A x(k) we have

$$V(k+1) - V(k) = x(k+1)^T P x(k+1) - x(k)^T P x(k)$$
(24)

$$= x(k)^T (A^T P A - P)x(k) (25)$$

$$= -x(k)^T Q x(k) (26)$$

$$< 0$$
 (27)

so V is a (discrete-time) Lyapunov function for the open-loop system, and so the open-loop system must be stable.

5

Module 4F3: Nonlinear and Predictive Control Answers to 2009 exam.

- 1. (b)(iii) Not necessarily.
- 2. (b) $N_2(E) = 1 N_1(E)$. (d)(i) No. (d)(ii) $-\delta < k < 8\delta$.