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(i) z. is an equilibrium point if f(z.) = 0.
(ii) An equilibrium z. is stable if Ve > 0 36 > 0 s.t. ||z(0) — z.|| < & implies [|z(0) — z.|| < € V

t>0.

(iii) An equilibrium z. is asymptotically stable if it is stable and 36 > 0 s.t. ||2(0) —z.| < & implies

lim; o0 2(t) = o .

(iv) Domain of attraction of an asymptotically stable equilibrium point z. is the set S of initial

conditions s.t. if z(0) € S then z(t) » z, a8t — 00 .

(i) First verify that z = 0 is an equilibrium point. Note that this is unique for |z;] < @, 1 =1,2,3.

It is clear that V(0) = 0.
Note that, providing that |z;| < e for ¢ = 1,2, 3, each of the integrals appearing in V' is nonneg-
ative, and positive if |z;| > 0. Thus V > 0 in some neighbourhood of 0.

- . oV, eV, 8V,
V= VV(Z‘).’E = 5;1-.’131 + 6—.’1,‘21‘2 + 6—.’1,‘3:1:3
= f(z1)[~z1 + h(zs)] + g(z2)[—h(zs)] + h(zs)[—f (1) + g(z2) — h(z3)]
= —z1 f(z1) — h*(z3) <0
Choose ¢ > 0 sufficiently small s.t. S :={z:V(z) <c} C{z: |z < afori=1,2,3} Sisa
closed and bounded invariant set, hence from Lasalle’s theorem for any z(0) € S, z(t) — M as
t — oo, where M is the largest invariant set in S included in {z : V(z) = 0}.

V(t) =0= zy(t) = 0,23(t) = 0
If z2(¢) # 0 then 37 s.t. z3(t + 7) 7 0 hence M only includes the origin.

(i) The Jacobian is given by
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where the derivatives are evaluated at the equilibrium point. The eigenvalues A of A are the
solutions of |Af — A| =0 i.e.

A+1 0 -2
R
(31 _5;:9; A+ﬁ



which gives at the origin (A -+ L)A(A + %) = 0 (also follows by inspection of A since 8f/8z;
and Jg/Ox, are both zero at the origin in this case). There is hence at least one pole on the
imaginary axis = linearization inconclusive.

(iii) Is the origin also globally asymptotically stable?
Not necessarily, e.g. other equilibria could be present for z; > « depending on the form of the
functions f,g,h. °
Note: even if the conditions specified for f, g, h hold for all |y| > 0 the set S would not necessarily
be bounded for all ¢ > 0, hence the analysis above would not be sufficient to conclude that S is
included in the domain of attraction of the origin for all ¢ > 0 (the latter would be the case if
e.g. f,9,h are additionally non decreasing functions).

2. (a) Consider e = Esinf. If E < §, f(e) = e/d, hence Ny(E) =1/6. If E > §

Uy + 7V
Ni(E) = —1#

V1 = 0 since f(e) is an odd function.
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Hence N;(F) is as required. -
(b) For § =1 we have g(e) =e — f(e). So Np(E) =1— Ny(F) , i.e

0 if B <1
Ny(E) = 2 [sin_l (3)+1/1- (%)2] if B> 1

(¢) fis an odd function. Therefore

_U_ 2w S(Esinb) .
Ny(E) = E =7, == sinddf >0
Also, since f(E'sinf) < E'sin6/4, we have
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(d)

Alternatively, a less formal argument invoking the concept of ‘equivalent linear gain’ is acceptable
here: from the form of the nonlinearity, it is clear that Ny(E) does not increase with E. Hence its
largest value is that for E < §. Also an argument based on showing that d{N\(E)}/dE < 0 could be
used.
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(i) Q[G(jw)] = 0 for w = 0 or w — 00, hence no intersections with negative real axis, therefore no
limit cycle from describing function method (using (c)).

(ii) To deduce stability from circle criterion need RIG(jw)] > —6 Vw.

G(jw) =

PRGN 02 P M ADIZ) _os(1) 21— =0 =3

So min,, R[G(jw)] = —2k/16 = —k/8 . R[G(jw)] is maximized when w? is minimized, i.e. w = 0.
So —% < R[G(jw)] < k. Soneed —6 < k < 85 .
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~

(b)

(c)

If a linear model is used (as in the standard formulation of MPC), then linear inequality constraints
of the form MX < m, applied to the predicted states, transform into linear inequality counstraints
on the predicted inputs, which are the decision variables of the optimization problem that is solved
in MPC. If a convex optimization criterion is used, such as a quadratic cost (which is the standard
formulation) or a linear cost (absolute values or peak values), then the resulting optimization problem
is convex. Since the optimization problem has to be solved on-line, it is important to solve a convex
problem if possible, since that guarantees that a solution will be found if a ‘descent’ search strategy
is used, and that this solution will be a global optimum of the problem.

A constraint of the form |z*| < ¢; can be written as two linear inequalities:

F <4 and -z <Y (1)

4]

This is now written for every predicted state in the prediction horizon:

[ Jes(t)
for s=1,2,...,N. Since zi appears in the vector X, the inequalities (3) can be included in the set

of inequalities M X < m by inserting the coefficients on the left and right hand sides of (3) in the
appropriate entries of Mand m.

which can be written as

Following the above, the inequality |Z| < 0.01 is written as

[ ]e=[oa] @

and the inequality |z| < 0.1 is written as

L ®




Now applying these constraints over the prediction horizon, and writing them in terms of the complete

predicted state vector, gives:

[0 0 1 0
00 -1 0
00 0 1
00 0 -1
00 0 0
00 0 0
00 0 0
00 0 o0

(d) If zg is the latest measurement of the state vector, we have predictions (since N = 2):
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which can be written as
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where U = [uf,u]]T. Hence the inequalities MX < m can be expressed as
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4. (a) The question asks for the principle rather than details, so the essential ingredients that should be

mentioned are

The receding horizon idea,

An internal model, used for prediction,
A cost function, which is minimised at each step,
Constraints which should not be violated,

e New measurements bringing in feedback action.

Benefits:

Easy to understand,
Deals easily with time delays,

Disadvantages:

e On-line computational complexity,
e Lack of transparency of behaviour;

Allows operation close to constraints,
Adaptation easily implemented, eg by changing the model.

Constraints can be considered explicitly,



(b)

i. From the definition of V, we have

ii.

iii.

V(Azo + Buj,0) = (Azo + Bug)TQ(Azo + Buf) +0 +
+(A%zo + ABug)T P(A%x + ABug)
= («TATQAzy + 22T ATQBug + uyT BT QBug) +
+(zF AT PA%zg + 227 AT PABu + uiT BT ATPABu)
= 13 AT(Q+ AT PA) Az + 22T AT (Q + AT PA)Bug +
+u3"BT(Q + ATPA)Bu;
= a3 ATPAzo + 223 AT PBul + uyT BT PBu}

where in the last line we have used the fact that P = AT PA + Q.
But

V*(zo) = xgQuxo+uyl Rul+ (Axo + Bug)T P(Azo + Bug)

z3 Qo + uiT Rug + (x3 AT PAzg + 223 AT PBuf + u2T BT PBu})
2 (Q + ATPA)zg + 22T AT PBufy + ulT (R + BT PB)u},

zg Pxo + 223 ATPBul + ugT (R + BT PB)u}

fl

where in the last line we have again used the fact that P = ATPA + Q.
Now comparing (15) and (19) we see that

V*(zo) = V(Azo+ Bug,0)+z3 (P~ ATPA)xzo + ulT Rug
= V(Azg + Bug,0) + 25 Qzo + uj” Rufy
> V(Azg + Bug,0)
if zp # 0, since Q > 0 and R > 0.

But
V*(Azg 4+ Buj) = min V(Azg + Bu*,u) < V(Azg + Buj,0)

so V*(Azg + Buf) < V*(xo).
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(15)
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(20)
(21)
(22)

(23)

QED

The idea is that we can use V* (the value function) as a Lyapunov function. In discrete-
time systems a Lyapunov function is one which decreases at each step, and has a minimum
at an equilibrium. We have just shown that V* has the decreasing property. Clearly we have
V(0,0) =0, V(z,u) >0if z # 0or u# 0, and (z = 0,u = 0) is an equilibrium of the system.
Hence V*(0) = 0 and V*(z) > 0 if z # 0. The other condition that needs to be established is

the continuity of V* — this is harder, and not covered in the course.
Consider V (k) = z(k)T Pz (k). For the system z(k + 1) = Az(k) we have

i

V(k+1) ~V(k) z(k + )T Pz(k + 1) — z(k)T Pz(k)
z(k)T(ATPA - P)z(k)
= ~z(k)TQu(k)

< 0

(24)
(25)
(26)
(27)

so V is a (discrete-time) Lyapunov function for the open-loop system, and so the open-loop

system must be stable.
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1. (b)(iii) Not necessarily.

2. (b) Na(E) =1 Ni(E). (d)(i) No. (d)(ii) =6 < k < 85.



