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Question 1

(a) Consider a pair of discrete random wvariables X,Y where X € {a,b,c} and
Y € {a,b,c} Obtain H(X),H(Y),HX|Y),HY|X),H(X,Y) and I(X;Y)
when their joint probabilities are:

1

Pxy(X =a,Y =a)= Pxy(X =bY =) :PX,Y(X:QYZC)ZE
1
ley(X:a,Yzb)ZPX)y(X—dY—C) 12

PX’Y(XZb,Y:a):PX!Y(Xzb,Y:C):ﬁ
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Px,y(X=C,Y:a)=Px’y(X—-—CY—b) 12

In order to calculate the required quantities, we need to calculate the marginal
probabilities.

Px(z) = Z Pxy(z,y)

Y

= Pxy(z,Y =a)+ Pxy(z,Y =b) + Pxy(z,Y =¢)
1 1 1 1
Px(X =a) = g ‘1—2'5 3
PX(X:b)*11—2 —é+11—2—:§
PX(X:c):iz+i2+é_%



Similarly, we obtain

Py(y) =) Pxy(zy)

= Pxy(X =a,y) + Pxy(X =b,y) + Pxy(X =¢c,y)

1 1 1 1
B =d=5+3g+t5=3
1 1 1 1
B ==p+5+ 53
1 1 1 1
B =0=p+5+5=3

Using the above results we obtain

H(X) = Z Px{(x)log, Px(z) = 1.59 bits
H(Y) = Z Py (y)log, Py(y) = 1.59 bits

HX,)Y)= - Z > Pxy(z,y)log, Pxy(z,y) = 3.08 bits

z oy
From the above quantities, it is easy to obtain all the rest

H(X|Y)=H(X,Y) - H(Y) = 1.49 bits
H(Y|X)=H(X,Y) - H(X) =149 bits
I(X;Y) = H(X) — H(X|Y) = 0.10 bits

(b) Let Y) be the output of channel 1 to input X; and Ys be the output of channel 2
to input X (see Fig. 77). Obtain the mutual information between the input of
channel 1 and the output of channel 2, I(X,;Y,), when the output of channel
1 to equally likely input symbols is used as input for channel 2.

The concatenation of the 2 channels is a channel whose alphabet is given by
X ={0,1} and Y = {0,1,7}. The corresponding channel transition probabil-



ities are

2
Pyx(0]0} = 3
2
Pyix(11) = 3
2
Pyx(1]0) = 0
Pyx(0[1) =0
1
Py x(?]0) = 9
1
Pyix(?|1) = 3

In order to calculate the mutual information we need the marginal probabilities
Py (y). These are calculated below

21 1
Py(O) = Py|X(0|O)Px(O) + PYIX(O|1)PX(1) = gé- = 5
21 21 4
Py (1) = Py|x(1]0)Px(0) + Pyix(1]1)Px(1) = 5573375
11 11 2
Py (7)) =P ?10)Px(0) + P x (0|1} Py (1) = == + == = =
v(?) = Pyx(?]0)Px(0) + Pyx(0[1)Px(1) 92+32 5
Then
Pylx( |z)
I Pxy(z,y)l
() = 55 Pt
0) Prix(y|1)
:po,loL(yl_erl,lOY'X—
Z; x,v (0, y) logy Po(y) Zy: x,y (1, 9) log, P (o)
Pyix (y]0) Pyix (y]1)
= P, [0)Px (0) logy ———~— + P 1)Px(1)log, ————
Z vix (410)Px (0) log, Po(o) ; vix (y[1)Px (1) log, Pe(y)
21 2 11 i 9 2 11 1 99 1
log, 2 log, 2 ~_log, 3 3
32log21 92og2 920g23+0+321005+3210g2§

=0.4591 bits

(c) Fig. 77 shows the random coding error exponents of 2 different coding schemes
in solid and dashed lines, respectively). What can be said about their respective
error probabilites and capacities?

From inspection we observe that the system in solid lines has smaller capacity
than that with dashed lines. However, for low rates, the error probability of
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the solid line scheme decays significantly faster than that of the dashed-line
scheme.

Ezplain why Gaussian signal constellations are impractical. Show that the
mutual information for QPSK modulation over the AWGN satisfies that

I(X;Y)y<.

The only way to implement Gaussian codebooks is to store the whole codebook
(2" codewords of length n) in a memory and compare the received signal
to each codeword by exhaustive search. This procedure is impractical for
lengths of practical interest. Furthermore, since the support of the Gaussian
constellation is the whole complex plane, there is no reference that can be
taken for implementation. Instead, practical constellations like QAM or PSK
can be implemented in practice.

The mutual information for a uniform M-ary signal set can be written as

IX;Y)=E r10g2 %X—)J

g [1og,  Prix(¥1X)

=B los 5 PY|X(Y|$’)P($’)J
r Ple(Y,X) J

= [ |log
LAY ex Prix(Y2)

Dwex Prix (Ylw’)J
Pyix(Y]X)

=log, M — E [log2

Pyix (Y2
v (14 2]

o'£X

Since the terms inside the sum over 2’ # X are probabilities, these are all positive.
Then, from the properties of the logarithm, we have that log,(1+ A) > 0if A > 0.
Hence

I(X,Y) <log, M.



Question 2

(a) Consider the signal set shown in Fig. ??. Find an orthonormal basis of the
signal space. What is the dimension of the signal set?
Using the Gram-Schmidt procedure we obtain

hH(t) = xlg El = /a:%(t)dt =2

ﬁ

ot
f(t) = f2(E3, fo(t) = za(t) = con it), €1 =0, Ey= /:Eg(t)dt =2
2
! t ,
o0)= 59 f50) = )~ cashl0) - safu)
3
C31 = /$3(t)f1(t)dt = \/i, C32 = O, Eé =1
The signals are shown in Fig. 1
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Figure 1: Basis for Question 1.

The dimension of the signal space is K = 3.
(b) Write the signal constellation points and draw the signal constellation.
The signal constellation points are
@1 = (V2,0,0), @ = (0,v2,0), @3 = (vV2,0,1), &y = (~v/2.0,1).
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The 3-D signal constellation is shown in Fig.
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Figure 2: Basis for Question 1.

(c) What is minimum distance of the constellation?

The pairwise distances are

3
di2 = ”ml — m2||2 = Z(xlk — xQ,k)Q =24+240=4
k=1
3
dis = llw — s)|” = Z(ffl,k —23)?=0+0+1=1
k=1

3
di4 = ||y — &4f* = Z(fﬂl,k ~T4)’=84+0+1=9
k=1
3
dy 3 = llz2 — as5* = Z(@,k —z3x)’ =2+2+1=5
k=1
3
d§,4 =z — x4 = Z($2,k - $4,k)2 =2+24+1=5
k=1
3

2i=llws —xa? = (234 — 24)? =8+ 0+0=8
k=1

Hence the minimum distance is dpyin = dj 3 = 1.

(d) BPSK modulation s employed to transmit over an AWGN channel. The chan-
nel introduces a phase rotation of 45 degrees, and this phase is known at the



receiver. How does this affect the signal constellation using the standard basis?
Does it affect the error probability?

The effect translates into a 45 degree rotation of the signal constellation. This
is shown in Fig. 3.
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Figure 3: Basis for Question 1.

If the phase shift is known, it does not affect the error probability. It is
sufficient to rotate the signal space basis functions by 45 degrees to recover the
original BPSK signal set and hence the standard error probability calculation

applies.



Question 3

(a) Consider a (8,4) linear binary code, with codewords on the form (x1, T2, T3, T4, P1, D2, D3y P4)
where z;,1 = 1,2,3, 4, are the information bits and p;,i = 1, 2, 3,4, are the par-
ity check bits. The code is defined as
P1=ZT2+ T3+ T4
P2=T1+T2+ 23
P3=21+2T2+ 24
Pa=21+ T3+ Ty
(where + denotes modulo 2 addition). Give a generator matriz, a correspond-
ing parity check matrix. What is the rate of the code?

The generator matrix can be written as

10000111
01001110
G=[I|P]= 00101101
00011011

since the code is described in systematic form. The corresponding parity check
matrix is then

01111000
CpTim |11 100100
H=[PT =\ 1010010
10110001

The code has rate R = 1/2, since it has 4 information bits and it adds 4 parity
bits to the codeword.

(b) Find the minimum distance.

The minimum distance is obtained as the minimum number of columns of H
required to sum to the zero vector. From the result in (a) we see that dy, = 4.

(c) Draw the factor graph describing the above code. Interpreted as a low-density
parity check code, write the variable and check-node degree distribution poly-
nomtals of the code (edge perspective).

The graph is shown in Fig. 4.
The code is check-regular with all edges connected to nodes of degree 4. We

have 4 nodes with degree 3 and other 4 with degree 1. Hence, the edge-

perspective distribution polynomials are
1 3 3

Mzx) = 1 + 5332 plz) = x°.
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Figure 4: Factor graph o the code in Question 3.

(d) The above code is used for transmission over a binary erasure channel. Can
the iterative decoder decode successfully if xo,x4 and p3 are erased while all
other bits are received correctly?

By removing the edges corresponding to known bits, we are left with the graph
shown in Fig. 5. We readily see that from the 4th check node, bit p3 can be
recovered, and hence x4. Z2 can be similarly recovered as the check node to

which it is connected has degree 1.



Figure 5: Factor graph o the code in Question 3.

Question 4

(a)

(b)

Consider the convolutional code generated by the encoder in Fig. ?7?7. What
are the code generators in octal form and what is the rate?

The code has rate R = 1/2 and the generators are (15,17)s.

Draw a section of the trellis diagram specifying clearly the contents of the
memory in each state and the input and the output corresponding to each
transition. Find the free distance, dgee, of the code.

The trellis section is shown in Fig. 6

The free distance can be found by tracking the lowest weight path leaving
state So and coming back to it. For this code the path is easily seen to be
S() — 84 — Se — 83 — Sl — So which gives dfree = 6.

What is the diversity achieved by the code when transmitted using BPSK modu-
lation over a fully-interleaved Rayleigh fading channel? Compare with uncoded
BPSK modulation.

According to pairwise error probability analysis, the diversity is given by the

minimum distance of the code, which in this case is the free distance dgee = 6.

What is the diversity achieved by the code when transmitted using bit-interleaved
coded modulation with 16-QAM over a fully-interleaved Rayleigh fading chan-
nel? Justify your answer.

The diversity is the same, as BICM preserves the properties of the underlying
binary code.
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Figure 6: Trellis section for Questions 4.
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(e) Draw the block-diagram of a parallel turbo-code of rate R = 1/3 using the
recursive encoder corresponding to the feedforward encoder shown in Fig. 77.
The corresponding block-diagram is shown in Fig. 7.

» Ci

Figure 7: Parallel turbo-code using recursive encoders.
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