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1 Question One

Part (a)

Identification: A mathematical model is an essential component for analy-
sis and control. An adaptive filter is used to provide a linear model that
represents the best fit (in some sense) to an unknown plant. The plant and
adaptive filter are driven by the same input and the plant output supplies
the desired response. If the plant is dynamic in nature, the adaptive filter
may be able to track the time-varying plant model provided it changes slower
than the adaptation rate.
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Inverse modeling: The function of the adaptive filter here is to provide
the best fitting (in some sense) inverse model to the unknown noisy plant.
Ideally the inverse model will have a transfer function equal to the inverse
of the plant’s transfer function. The desired response is a delayed version of
the plant’s input. In some instances a delay is not necessary.
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Prediction: The function of the adaptive filter is to provide the best
prediction (in some sense) of the present value of the input signal. The input
of the filter are the past values, hence the delay. The desired response is the
present value.
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Interference cancellation: The adaptive filter is used to cancel interference
which is present alongside the signal of interest in the primary signal. The
input to the filter is the reference signal. This signal is derived from a sensor
located relative to the sensor supplying the primary signal in such a way that
the signal of interest is undetectable. The adaptive filter will synthesize the
interference in the primary signal using the reference signal which is then
subtracted from the primary signal.
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Part (b)
R=E{[u(n) u(n—1)"un) u(n-1)}

E{{mmwm %nwn—n }}

wln — u(n) un — Lu(n — 1)
-lat]
a 1
1-) a

Solve for eigenvalues: det([ N Y }) =0. (1-X)?—a? = 0. This

gives
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Part (c)
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Now differentiate this function with respect to w and set the derivative to 0:
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Setting the derivative to zero:
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2 Question Two

Part (a)
The M-tap LMS algorithm for linear prediction is

h(n + 1) = h(n) + p(u(n) — h(n)Tu(n — 1)u(n - 1)

where u(n — 1) = [u(n — 1),u(n — 2),...,u(n — M)].
Part (b) Step-size range is 0 < p < ﬁ where Apax is the maximum
eigenvalue of matrix R defined as follow:



R = E{u(n)u(n)"}
= E{(x(n) + v(n))(x(n) + v(n))"}
=F {x(n)x(n)T +x(n)v(n)T +v(n)x(n)T + v(n)v(n)T}
=R, + 0’1
where 1 is the M x M identity matrix.

We know the LMS will converge in mean to the same solution as the
Steepest Descent algorithm which is

lim E{h(n)} = (Rs + 03) 7 E{u(n — Du(n)}
and
p = E{u(n — Du(n)} = E{(x(n — 1) + v(n = 1))(z(n) + v(n))}
= E{(x(n — 1)z(n)}
Part (c) The v-LMS is
h(n +1) = vh(n) + p(u(n) — h(n)Tu(n — 1))u(n — 1)

Take expectation on both sides:

E{h(n+1)} = vE{h(n)} + uE {(u(n)u(n — 1) — u(n - Lu(n — 1)*h(n))}
=vE{h(n)} + up—pE {u(n - u(n - 1)"h(n)}
~vE{h(n)} + pp—uE {u(n — Du(n — 1)} E{h(n)}
= vE{h(n)} + pp—p(Rx + o31) E{h(n)}

The Independence Assumption was invoked in the second last line. Call the
limit point h:
h =vh + pp—u(Ry + 021)h

We would like the limit point to satisfy Ryh = p. This would require
h =yh—puo’h
or
l=y—uo?.
Thus, assuming the algorithm converges in the mean, choosing u= (y—1)/02

and v > 1 will remove the bias. (We have not specified further restriction on
«y to ensure convergence in mean.)



3 Question Three

Part (a): The random process {X,} is WSS if the following 3 conditions are
satisfied:

1) Constant mean

2) The autocorrelation function E(X,X,,) depends on only the difference
jm— |

3) The variance of the process, E(X?2) — E(X,)?, is finite.

The Power Spectrum is the Discrete Time Fourier Transform (DTFT) of
the autocorrelation function Rxx[k] = F(X, Xnik):

Sx(e) = T Rxxll(e )"

Part (b): Let the data points be {zg, 21,...,Zn-1}-
The Correlogram estimate for the power spectrum is obtained by taking
the DTFT of the sample autocorrelation function:

Sx(@) = 5 Rxlkl(e)*

k=—-L

where L << N and Rxx|k] is either the biased or unbiased estimate:

1 N-l-k

Rxx[k] = —— >. ZnZnik, 0<k<N (unbiased)
N -k n=0
. 1 N-1-k
Rxx[k] = N Y TnTnik, 0<k<N  (biased)
n=0

In both cases we set Ryxx[—k] = Rxx[k].
The Periodogram estimates uses L = N — 1 and the biased estimate for
Rxx. In this case, the well known simplification is:

. 1 .
SX(e]w) = N’Xwin(e]w)lzj
) N-1 .
Xwin(e?) = Z T (™)™
n=0

This shows the Periodogram estimator is non-negative.



Part (c):

ESx(@)} = 3 Bl )
= N |&| —jwnk
= k=—ZN+1 N Rxx[k}(e™*)

= DTFT(wk X RXX [k)])

where wy = N;““l, —N+1 <k < N -1, and zero for values of k¥ beyond this

range. Thus

BSx()} = 5, W () Sx(e*)

where W (/) =DTFT(wy).
Part (d) For zero mean white noise, E(X,,) = 0, E(X2) = 02, E(Xp, Xp11) =
0 when k # 0. Using the result from part (c),

E{Sx(e™)}
N-L N — |k
- N
k=—N+1
= Rxx[O] = 0'2.

Rxxk)(e )"

So the estimate is unbiased.
Part (e). The Blackman-Tukey method applies a window function of
length 2L + 1 to the estimated autocorrelation function:

o L, .
SEE) = 3 wRxx[k}(e™)
k=—L

1 . o .
= %V(ew) * Sx(e™)

where L < N — 1, Sx(e) is the Periodogram and v is a suitable window
function. The expected value of the estimate is

E{SET (i)} = %vw « E{Sx(e)}

The variance is reduced by diminishing the contribution of Rx x|[k] for
values of k close to N to the power spectrum estimate. There are only very
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few data samples that are used to estimate Rxx [k] for values of k close to
N and these estimates can have high variance

The drawback is that the spectrum estimate is further smoothed by the
applied window function and there is a loss in frequency resolution.

4 Question Four

Part (a) (A solution that includes all the points below would be ideal.)

If the physical process which generated the data is known or can be well
approximated, then a parametric model can be constructed.
Careful estimation of the parameters in the model can lead to power spectrum
estimates with improved bias/variance over non-parametric methods, e.g.
periodogram-based methods.
We will consider spectrum estimation for LTI systems driven by a white noise
input sequence. If a random process {X,} can be modeled as white noise
exciting a filter with frequency response H(e’T) then the spectral density of
the data can be expressed as:

Sx () = o}, | H(eT)[?

where 02 is the variance of the white noise process.

We will study models in which the frequency response H(e’*T) can be
represented by a finite number of parameters which are estimated from
the data.

Parametric models need to be chosen carefully - an inappropriate model
for the data can give misleading results

A quite general representation is the autoregressive moving-average (ARMA)
model. The ARMA(P,Q) model difference equation representation is:

P Q
Tn = — Z Ap Tn—p + Z by Wn—g (1)
p=1 q=0

where:

a, are the AR parameters,
by are the MA parameters



and {W,} is a zero-mean white noise process with unit variance, o2 = 1.
The ARMA model is a pole-zero IIR filter-based model with transfer function

B(z)

) =%

where:
P Q
Alz) =1+ Z a,2”?, B(z) = Z bgz ™1
p=1 q=0

We will always assume that the filter is stable, i.e. the poles (solutions of
A(z) = 0) all lie within the unit circle
The power spectrum of the ARMA process is:

|B(e™T)?
|A(e*T) P

The ARMA model is quite a flexible and general way to model a station-
ary random process: The poles model well the peaks in the spectrum (sharper
peaks implies poles closer to the unit circle) The zeros model troughs in the

spectrum. Complex spectra can be approximated well by large model orders
P and Q)

Part (b)
The AR model can be written equivalently as:

Sx(ejWT) =

P
Ty = — Z Ap Tp + €5. (2)
=1

A convenient way to fit an AR model to the data is by choosing the
parameter vector a which minimizes the total squared prediction error, E:

np
&= E e? =ee

n=njy

where e = [e,,, €n,+155 enF]T. In matrix notation: e = x 4+ Xa where

Tn,; Tny—1 Tpn;—2 ... Tp—p ay

Tn+1 T,y Tng—-1 . Tp;—P41 az
x=| . , X=|. . ) , a=

Tnp Tnp-1 Tpp—2 .. Tpp—P ap



Now, expand eTe and differentiate:
e=x+Xa

efe = (x+ Xa)'(x + X a)
=x"x +2x"Xa +a'X"Xa

de’e) 2(9(xTXa) N 0(aTXTXa)

Oa Oa Oa
=2X"x+2X"X a
For the minimum of eTe:
d(eTe)
=0
Oa

Therefore, a = —(X" X)X x.
The covariance method minimizes only those error terms which can be
fully calculated from the data. Examine the error equation:

P
en =Ty + g Qp Tn—p
p=1

The first error term that can be fully calculated is ep and the last is ey_;.
Hence n;y = P and ng = N — 1 in the squared error equation:

N—-1
C _ 2
=Y e

n=P

The resulting matrix XTX is not Toeplitz. The AR parameter estimate is
not guaranteed to be stable

In the autocorrelation method ny = 0 and ng = N + P — 1. Hence the
squared error minimized is:

N+P-1

A 2
'y
n=0

To calculate these error terms requires data before n = 0 and aftern = N—1.
These data points are assumed to be zero.
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XTX is Toeplitz, which means that the efficient Levinson recursion (O(P?))
can be used to solve for a. The parameter estimate is guaranteed to be stable.

Part (c)

The Autocorrelation method:

IN;—1 ZTNy—2 "' TN—P TNy

TNy INy—1 ' INp—P+1 IN+1
X=1. . . o X= |

TNp—1 INp-2 ' INp-P TNp

Insert the data to get (remember N; =0 and Np = N — 1+ P =6)

[0 0] [01]

1 0 —9

2 1 3

X= 3 -2, x=| -4

4 3 5

5 —4 0

0 5] 0]
ro [ 55 —40 r [ —40
XX“[—40 55 ] XX‘[% }

Solving XTXa = —X%x gives a = [0.814,0.119]. Note that XTX is Toeplitz.
The zeros of the transfer function A(z) = 1+ 0.81427! +0.11927% are z =
—0.623 and z = —0.191.
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