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1 (a) Taking the inverse FT of the ideal frequency response will give an impulse
response which does not have finite support — to remedy this we multiply by a window
function which forces the impulse response coefficients to zero for (ny,n;) outside Ry, the
desired support region. The actual filter frequency response H(;, @) is then given by
the convolution of the desired frequency response Hy(w;, @) with the window function
spectrum W (o;, @;).

This is exactly as we should expect since we multiply in the spatial domain and
must therefore convolve in the frequency domain.

Thus the effect of the window is to smooth H,; — clearly we would prefer to have
the mainlobe width of W(w;, @) small so that H; is changed as little as possible. We
also want sidebands of small amplitude so that the ripples in the (®;,®;) plane outside
the region of interest are kept small.

The two most popular methods of forming 2d windows from 1d windows are

(i) Taking the product of 1d windows:

w(uy,ug) =wi(ur) wa(uz)

(i)) Rotating a 1d window:

w(uy,up) =wi (u)|u=\/(u%+u%)

(b) First find the FT of w;

U N
Wl(w1)=/ e /U1 duy

[e—jwlul]Ul

—Jjo ~Uj

= 2U7 sincan U

W(w,) will take precisely the same form so that the required spectrum will be the
product of W; and W,.

W(wy, @) = 4U1U; sincw; Uy sinca,Us

(cont.

[10%]



Spectrum looks like:

‘Specirum of product of rectangular windows, N= 1515

Fig. 1

where, U; is (for illustrative purposes) taken as 2.57 in the above sketch and units
on @; and @, axes are in units of 2%. Only sketch of general shape and some indication
of where zeros of sidebands are (%’—f) required for answer.

[25%]

(c) Repeat above with the cosine window. First find the FT of wy

Uy Ty ;
Wi(wy) = / cos (——) e JP1* duy
Uy U

1

Uy .
:%/ : eJu1(®/U1—my) 4 o—jur(@/Urtor) gy,

1 | efm(@/U1—0) o= jur(7/U+w) Y
2| jm/U—an)  j(m/UL+ ) _y,
= U{ sinc(w — @ Uy) + sinc(w+ o U;)} )

As before, W(w,) will take precisely the same form so that the required spectrum
will be the product of W; and W>.

W (o, ;) = U Uy{ sinc(r— Uy )+ sinc(m+o1Uy) }H sinc(w — oyUz) + sinc(n+wpUz)}

(TURN OVER for continuation of SOLUTION 1



Spectrum along @ axis looks like:

Fig. 2

(equation 1 drawn with U = &). Require zero crossings in answer.
As we can see from the above plot, the spectrum of the cosine window has a wide

main lobe with a significant depression at @ = 0 — even though the sidelobes are fairly
[25%)]

low, the mainlobe characteristics are not desirable.

We can deduce the spectrum of this superposition of windows from the above

(d)

results:

Wi (wy) = U; (20 sincon Uy + B{ sinc(w — @ Uy) + sinc(m + 0 Uq)})
And similarly for Wy (@, ). If w; (0) = 1 we have
o+ =1
If W;(57/(2U;) = 0 then we have that
U (2a sinc57/2 + B{ sinc(37w/2) + sinc(77/2)}) =0

so that W;(57t/(2U;) = 0 gives us
{cont.



5275~ B2/(m) +2/(7)) =0

and therefore

B[1+50/42] =1

giving B =42/92 =0.46 and o = 50/92 = 0.54

(e) Note that the above values of & and 8 are in fact precisely those used in the
Hamming window. It is clearly desirable to have the window function take the value 1
when centred on (u;,u5) = 0, as we do not want to introduce an overall scale. Also,
given the form of the spectrum W the zero crossings are at integer multiples of nz/Uj,
n > 2 and the sidelobe peaks are at nz/(2U;) where n > 3 and is odd. Thus, ensuring
that the first main sidelobes have their peaks going to zero, ie the sidelobes with peaks at
j:%’l_f, is clearly going to suppress the largest sidelobes and hence their effect (see this by
superposing the plots).

2 (@ O

siup) =Y, Y 8(uy —mAyup —nghy)

nlz_oon2=_°°

and

1 00 (o]
Gs(o,m)=—— ) Y Glog—p1Q),0—prQ)
A2 p T py =

where Q; = %f It can therefore be seen that the Fourier transform or
spectrum of the sampled 2d signal is the periodic repetition of the spectrum of
the unsampled 2d signal — precisely analogous to the 1d case. It is therefore
clear that for a bandlimited 2d signal, we must sample at more than twice the
largest frequencies in the signal to keep these copies of the FT separate.

(ii) Given Part (i) we know that to avoid aliasing we need to sample at twice

the largest frequencies in the signal. Therefore

(TURN OVER for continuation of SOLUTION 2

[30%]
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[15%]



27

Q1 =—>20
1 A1>
and
27
Qy=—>10Q2
2 A2>

Therefore 2Q and 10€ are the minimum sampling frequencies required.

(iii) The above implies that we require

V3
Ay < Z
1>

and

n
50

Note that given value of Aj(= 37/(2Q)) is greater than the above
critical value, while given value of Ay(= 7/(6Q)) is less than above critical
value. Thus we will get aliasing. Since the spectrum of the sampled signal

A <

will be the spectrum of the original signal ( which is 4 delta functions at £
and +5€) repeated at every interval of the sampling frequency, we get the

following pattern: 5o, WL
ne+
- * » hd [ 4 » » »

S8 e a 3R a2 O
® * » 2 T b 8 LI -

A variety of forms of sketch are acceptable (ie 2D or 3D).

®) Q) The likelihood is obtained by using the fact that the noise is

Gaussian:

(cont.

[15%]

[15%]



Py[x) o 74N _ 5 (-1 TN (y-Lx)

[15%]
(i1)  Again, using the fact that we can regard x as a gaussian random variable:
—leC_lx
P(x)ece™ 2
From Bayes’ theorem,
P(x]y) e P(y[x)P(x)
which is then given by
-1 [y—Lx)TN_1 (y-Lx)+xTC™ lx]
P(x|y) e 2
[15%]
(ili) The conventional expression for the Wiener filter contains the following
quantities:

H(®) is the Fourier transform of the point-spread function A(n) — it is
associated with the distortion matrix L.

Pyx (@) is the power spectrum (Fourier transform of the autocorrelation
function Ryy(n)) of the (assumed) spatially stationary process x(n). It is
associated with the covariance of the gaussian random variable x, C.

P, (@) is the power spectrum (Fourier transform of the autocorrelation
function Ry4(n)) of the (assumed) spatially stationary process d(mn). It is
associated with the covariance of the noise, d, assumed gaussian, N. [25%]

(TURN OVER
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3 (a) The Z transform of the original sampled signal y, is

Joo
Y(z) = Z ynZ "

therefore
400
Y(-z)= _Z_ yn(=2)™"
so that
1 1 g —n n
Y@ +Y(-) =5 ¥z "(1+(=1)")

n=—oo

(1+(—1)") is 2 if n is even and O if n is odd, therefore the RHS of the above
equation is Y (z). [20%]

(b) Analysing the block diagram in the figure and substituting the above resuit,
we get:

—~

X(z) = 1Go(Z)[Yo(Z)+Yo(—Z)]+1G1(Z)[Y1(Z)+Y1(—Z)]

o) 2
= 3 Go@H(@X (2) + 5Go(e) Ho(~2)X (~2)
+ 3G1DHI DX (D) + 561 () (~)X(~2)
- %X(z)[GO(z)Ho(z)+G1(Z)H1(Z)]
+ %X(—z)[Go(z)Ho(—z) + Gy (2)Hy (~2)]

If we require X)=x (z) ~ the Perfect Reconstruction (PR) condition — then the
antialiasing condition to eliminate the terms in X(—z) is:

Go(2)Hp(—z) +G1(2)Hi (~2) =0

and the PR condition is:

Go(2)Ho(z) +G1(2)H () =2

(cont.



In an image coder, these conditions ensure that the forward and inverse wavelet

transforms do not introduce any distortions in the output image. The only source of
distortion is the coefficient quantiser. [25%]

(©) If H (z) = 2Go(—z) and G(z) =z~ Hy(~z), then the LHS of the anti-

aliasing condition becomes:
Go(2) Ho(—2) +2 ™ Ho(~2) (~2) Go(2) = Go(z) Ho(—2) — Ho(—2) Go(z) =0
Hence this condition is satisfied. The PR condition becomes:
Go(2)Ho(2) +2~ ' Ho(=2)2Go(—2) = Go(2)Ho(z) + Ho(—2)Go(~2) = P(2) + P(—2)

Hence if P(z) + P(—z) = 2, the PR condition is also satisfied. [20%]

(d) For the given filters:

1
P(z) = Go(2)Ho(z) = §(z+2+z”l) (az? +bz+c+bz~ +az7?)

1
= 3 [az® + (2a+b)22 + (a+2b+c)z+ (2b+2¢) + (c+2b+a)z L+ (b+2a)7 2 + a7~ 3]

If P(z) + P(—z) = 2, then the coefs of z2 and z~% must be zero and the coef of 20
must be 1 (odd terms will cancel). Hence

1
2a+b=0 and 5(2b+20)=b+c=1

If, in addition, Ho(z) =0atz=—1,2a—2b+c = 0.
Hence —b—-2b+1—b=0,andsob=1/4,a=—-b/2=-1/8andc=1-b=13/4.
Since Hy (z) = zGo(-z), and Gy (z) = 2~ Hy(—z), we have

[15%]

(e) 1 1
Go(z) = 5(z+2+z_1) = Ez_l(z+ 1)?

(TURN OVER for continuation of SOLUTION 3
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So G has two zeros at z = —1, which means it is a lowpass filter.

Ho(z) = a?+bz+c+bz +az™?
1 _ -
- §(-22+22+6+22 1_z72)

= %2_2(z+ 1)?(~2*+4z—1)
= T2+ V) E-2-VA)

This also has two zeros at z = —1 and two zeros that are well away from the unit
circle, at 24 /3. The latter two zeros therefore only have a small effect on the frequency
response, and so this is also a lowpass filter.

Now Hj (z) = zGo(—z) and G1(z) =z~ 'Hy(—z), so these filters will have zeros at
the negative of the zeros of the corresponding filters Gy and Hy.

Hence H; will have two zeros at z = +1 and be a highpass filter. G; will have two
zeros at z = +1 and two zeros that are well away from the unit circle, at —2 + V/3; and
hence G will also be highpass.

Good performance is achieved in a wavelet transform image coder if the filters are
of the above types, because the wavelet coefficients are generated by outputs from H; at
each stage, and will have least energy (and hence greatest compression performance) if
H; is a strongly highpass filter. This is because typical image signals have most of their
energy at low frequencies.

4  (a) The sketch below shows the sensitivity of the human eye to luminance and
chrominance (Y and (U,V)) — the horizontal scale is spatial frequency and the vertical
scale is contrast sensitivity (ratio of maximum visible range of intensities to the minimum
discernable peak-to-peak intensity variation at the specified frequency).

We see that the maximum sensitivity to ¥ occurs for spatial frequencies around 5
cycles/degree and we note that the eye has very little response to anything above about 100
cycles/degree. Also note that sensitivity to luminance drops off at low spatial frequencies
(in the absence of time variations) and that the maximum chrominance sensitivity occurs
at much lower spatial frequencies than for Y. The chrominance sensitivities indeed fall
off above about 1 cycle/degree.

(cont.

[20%]
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Contrast Sensitivity of the Eye
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Fig. 3

From these facts we can see why it is better to convert to the YUV domain before
attempting image compression:

*The U and V components may be sampled at a lower rate than Y due to the
narrower bandwidth required

*The U and V components may be quantised more coarsely than ¥ due to the
lower contrast sensitivity.

(b) Under the system used in JPEG the luminance (¥') of a pixel is obtained from
its RGB components from:

Y =0.3R+0.6G+0.1B

The chrominance of a pixel in this system is defined by two components U and V
which are given by:

U=05(B-Y) and V =0.625(R—Y)
(TURN OVER for continuation of SOLUTION 4

[15%]
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If C is the matrix that maps X,g, = [R G B] onto Xyyy = [Y U V] and Cclisits
inverse, then the top row of the matrix equation Xy,y = CX,gp, is given by

Y =C R+C1p6G+Ci3B

and comparing this with the above ‘definition’ of ¥ we see that C1; = 0.3, Cjp =
0.6, C;1 =0.1, as required.

From the equation for C we also have X, =C _lxyuv. So, in order to pick out the
first column of C~! we can take the vector [V O 0] so that

R G BT =v[ci! ¢t )

But if U =V = 0 we must have B =Y and R = Y, which then tells us that
0.6Y =0.6G sothat R=G =B =Y giving

vi1 1 7 =v[c! ot )

as required, ie no chrominance components lead to an equal contribution from each
of R,G,B. [25%]

(c) The image size is 768 x 1024 = (3 x 28)(1 x 210) = 3 x 218,
Hence the luminance component (¥) of the YUV image is also of this size.

Since the U and V images are subsampled 2 : 1 in each direction, they each have

3x 216 pixels.
The number of bits required to code an image is > entropy X no. pixels, thus
Y image requires > 1.3 x (3 x 218) = 3.9 x 218 bits
U or V images each require > 0.6 x (3 x 216) = 1.8 x 210 bits

Hence the total number of bits for ¥, U,V images is > (3.9 X 2241.8+1 .8) x 216 =
19.2 x 216 = 1.2 % 220 = 1.2 Mbit

In practice the number of bits could be a little higher than this (due to the use of

non-ideal codes) or a little lower if higher-order correlations in the data can be exploited.

The proportion of chrominance (U, V) bits is 27558 = 18.75%. [30%]

(d) Run determines the number of zero-valued coefficients which precede each
non-zero coefficient.

(cont.
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Size represents the log, of the magnitude of the non-zero coefficient (rounded down
to an integer value).

Additional Bits are an n-bit binary code that specifies the value of a coefficient of
size n within the range 2"~ 1 to (2% — 1) and —2"~1 to —(2" —1).

Typically no more than 15 states are needed for Run and no more than about 12
states are needed for Size, so it is feasible to create a 2-dimensional Huffman code for
these two parameters combined.

This code can also take advantage of the strong correlation that exists between
longer runs and small sizes (and vice-versa). Hence the entropy of the 2d code is less
than that for the two parameters independently, and the bit rate can be lower than the
basic entropy of the Run and Size data separately.

END OF SOLUTIONS

[30%]



Engineering Tripos Part IIB 2009
Numerical Solutions: 4F8 Image Processing and Image Coding

Q1
(b) W{wy,ws) = 4U U, sincw,U; sincwyUs

(€) W(w1,wq) = U1 Us{ sinc(m—wiUr)+ sinc(m+w Uy) H{ sine(m —weUs) + sinc(m+wals)}

(d) a = 0.54, B = 0.46.

Q2
(8)(1) s(u1,up) = Y0 o Dm0 01 — M1 AL, Ug — M)
and

Gs(w1,w2) = F87 Doprm—co 2opemco G (W1 = D180, wa — paQs)

where §); = %.
2

(i) & = 2 > 20 and Q; = 2L > 100

(b)(i) P(ylx) o ~39TNTM _ —5(r-L)TN Ny~ Lx)

(ii) P(x|y) cce” 3y -L0T N y—Lx)+xTC 1]

Q3
(b) The antialiasing condition is: Go(z)Ho(—%) + G1(2)Hi(~2) =0

and the PR condition is: Go(z)Ho(2) + G1(2)H, (%) = 2

(c)b=1/4,a=—1/8 and ¢ = 3/4.

Hi(z) = 3(-224+22—-1) and Gi(z)=—gz—1+327 1 — 1272 — 4273

(e) G has two zeros at z = —1
Hy(z) has two zeros at z = —1 and two zeros that are well away from the unit circle, at
24+ /3.



H, will have two zeros at z = +1
G, will have two zeros at z = +1 and two zeros that are well away from the unit circle,

at —2 + /3.

Q4
(c) Y image requires 3.9 x 2'® bits

U or V images each require = 1.8 x 26 bits

Total number of bits for Y, U,V images is x2¢ = 1.2 x 220 = 1.2 Mbit

The proportion of chrominance (U, V) bits is 18.75%.
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