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Question 1

(a) For the Smith-Waterman Space the complexity for computing
alignment path for sequences of length n and m is O(nm). We need
to keep all backtracking references in memory to reconstruct the
path (backtracking); while the Space complexity of computing just
the score itself is O(n), n>m. We only need the previous column to
calculate the current column, and we can then throw away that
previous column once we're done using it. The figure show how to
find the middle point which wil lead to store only O(n) values.

Linear-Space Seguence Alipnment
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The algorithm can be briefly described as follows:



Path (source, sink)
if source and sink are in consecutive columns
output the longest path from the source to the sink
else
middle + middle vertex between source and sink
Path (source, middle)
Path (middle, sink)

(b) BLAST (Basic Local Alignment Search Tool) is created to do
similarity searches of a query against a database. The first
preparatory step consists of constructing a hash table of all seeds
occurring in the query sequence. A seed of weight k is a word
consisting of k contiguous nucleotides (k-word),. The search needs
to be precise, i.e. should report all, or at least a vast majority of
interesting similarities that could be relevant in the underlying
biological study. This requirement for the alignment method, is
called sensitivity and, counterweights the speed requirement,
usually directly related to the selectivity (called also specificity) of
the method. The fundamental unit of BLAST output is the High-
scoring Segment Pair (HSP). The HSP consists of two sequence
fragments of arbitrary but equal length whose alignment score
meets or exceeds a threshold score. The standard BLAST algorithm
parameters are word length w, word score threshold T and segment
score threshold S. The approach to similarity searching used by the
BLAST program is first to look for similar segments (HSPs) between
the query sequence and a database sequence. This begins with
identifying short words of length w in the query sequence that
either match or satisfy some positive-valued threshold T when
aligned with a word of same length in a database sequence. This is
done by building an automaton of all the neighbors of the words.
These hits act as seeds for initiating searches to find longer HSPs
containing them. The word hits are extended in both directions
along each sequence for as far as the cumulative alignment score
can be increased. Extension of the word hits are halted when: the
cumulative alignment score falls off by the quantity S from its
maximum achieved value or the end of either sequence is reached.
PSI-BLAST (Position Specific Iterated ? BLAST ) is the state of the art
Blast software. lterative Procedure: Performs BLAST on a database
and Uses significant alignments to construct a position specific
score matrix. This matrix is used in the next round of database
searching until no new significant alignments are found.
PatternHunter was the first method that used carefully designed
spaced seeds to improve the sensitivity of DNA local alignment. A
spaced seed is formed by two words, one from each input sequence,
that match at positions specified by a fixed pattern - a word over

-2 -



symbols # and _ interpreted as a match and a don't care symbol
respectively. For example, pattern ##_# specifies that the first,
second and fourth positions must match and the third one may
contain a mismatch. Spaced seeds have been shown to improve the
efficiency of lossless filtration for approximate pattern matching,
namely for the problem of detecting all matches of a string of length
m with q possible substitution errors (an (m, q)-problem). Other
software use some specific spaced seeds and random spaced seeds



Question 2

(a) Non-biological “background” signal, like non-specific hybridization and technical
noise, might contribute to the measured intensities (“foreground”). Side-by-side boxplots
of the distributions of background and foreground signals for both channels (for the case
of two-colour microarrays) in all arrays can help to assess the overall background effect.
Plots of spatial distribution for background and foreground help to detect spatial artefacts.
If background correction is found to be needed, looking at the low intensities side on MA-
plots (average log-intensities vs. log-ratios) and density plots (smoothed histograms) of
intensities before and after correction can help to monitor its effectiveness and the amount
of noise/bias introduced by it.

For two channel microarrays, there is usually some dye bias and the need for
within-array normalisation of intensities, so the two channels can be compared. Median
normalisation (i.e making the median intensities of both channels equal, which is
equivalent to setting the median M to zero) can be applied if one assumes that the changes
are overall roughly symmetric. If there is an intensity-dependent dye bias (which can be
monitored with the MA-plot), “loess” normalisation (i.e. equalling the loess line of M-
values across intensities to zero) is more appropriate and assumes that the changes are
roughly symmetric at all intensities. If there is information about the printing of the
array and an effect associated with the print-tips is detected, “loess” normalisation can
be performed for each print-tip group of probes. Quantile normalisation is usually used
between single-channel arrays and relies on a stronger assumption, enforcing the chips to
have identical intensity distribution. Boxplots and density plots of intensities can be used
to monitor the effectiveness of the normalisation procedure.

References:
Lecture 2 notes;
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Dec;31(4):265-73. [PMID: 14597310].

(b) A design matrix must be created to reflect the expected log-ratio for each slide.
These log-ratios must be a linear combination of independent contrasts of interest
(parameters). Let X be the design matrix and ¢ the standard deviation between slides
for a particular gene. The standard error of the ith parameter estimate is then given by
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0./c; , where ¢; is the ith diagonal element of the matrix (X Tx )—1. These calculations
assume independence of replicates, which does not happen in reality. There is always
some correlation between the expression levels of different sample types. Moreover the
effective replication for each sample type depends on the correlation between replicates.
The more independent the replicates, the higher the effective replication. Having highly
correlated replicate arrays is equivalent to having fewer arrays on the estimation of the
parameters and their variances.

References:
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experiments”. Biostatistics 2004 Jan;5(1):89-111. [PMID: 14744830].

(c) Relative gene expression measurements (observed M-values) canaAZt be assumed
to result from a normal distribution. M-values actually have a very heavy tailed
distribution. Moreover, the sample size for each gene corresponds to the amount of
replication for each type of array, which is usually very small. ItAAZs hard to judge
significance on small sample sizes, as the assumptions for any statistical test become
weak. Moreover, microarray experiments typically have thousands of genes, whose M-
values have different variances and are correlated in an unknown way, and so there is a
high level of multiple testing.

The B-statistic moderates the standard t-statistic by incorporating information about
the variability of all the other genes to smooth the standard error for each individual gene.
The higher the number of genes and/or the lower the number of replicates, the stronger the
“shrinkage” of the standard error. The B-statistic benefits from the best of the t-statistic,
which is to prevent the average M to be driven by outliers (specially for a small sample
size) by incorporating information about its variability. It also avoids the main problem
of the t-statistic, which is to be driven by tiny variances that are likely to appear randomly
when many tests are performed, by empirically smoothing the standard error. The B-
statistic ranks the genes according to the evidence (log odds) for differential expression.
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Question 3
(a)(@)
P(k,t)
e flk=1)P(k—1,t)+g(k+ 1)P(k+1,t) — [f(k) + g(k)|P(k,t)
(ii)
dix) de(k,t)
dr dt
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At equilibrium %);) = 0 hence (f(x)) = (g(x)) .
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(iv) At equilibrium %2 =0 and (f(x)) = (g(x)). Note that using the linearisation we also
have f((x)) = g({x)) . The ODE for (x?) gives

20x[f((x)) — () + (x = N (F' (%)) = 8" (N]) +2f((x)) = 0
= (1= @) (f' () — & () + £((x)) =0
)

f(x)
g'((x) = f'(x)

Approximation is valid if fluctuations are small (e.g. in large molecule numbers).
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From (a) at steady state f((y)) = g({y)) = B(y) . So
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So increasing 4 decreases O'y2 for (y) > 1 and not necessarily true otherwise, in which case
the approximation is very likely not be valid anyway.
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