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Section A, Complex analysis

i. Take out z* from the denominator to get

1 1
f(z)= 23(1 — 22) = 2B(1+2)(1-2)

The singularities are all isolated, they are poles are at z=—1,0, 1, of order
1, 3 and 1, respectively. Taking the 3rd order pole first, the Maclauren
expansion of f around z5=0 is

f(z)= %(1 — 242+ O(F))(1 + 24 22+ O(29))

The residue is the coefficient of the 1/z term, which is 2—1=1.

For the first order poles, note that the residue at zp is lim,_, ., (z — 20) f(2),
so at zg=1 we have

lim (z—1) -1
=1 23(1+2)(1—-2) 2
and at zp=—1, we have
lim 21 = -1
-1 23(14+2)(1—-2) ~ 2

ii. The function f(z) = 1/sin(1/z) has an essential singularity at z = 0 and
simple poles at the zeros of sin(1/z), which are at z = 1/nw, n = 1, 2...
(there is also simple pole for n = 0, in the extended complex plane that
includes the point at infinity, but the course did not cover this). To obtain
the residue at a simple pole, note that for z close to 1/nw, z = 1/n7 + ¢,
where ¢ is small, and

sin(l/z) = sin(_1_1+6)

. nw
= sin
( 1+nne )

sin{nn(1 — nmre + O(?)))
(= 1)"sin(n?7% + O(?))
(= D)™n27%e +0(e?)

I

using the periodicity of the sin function. Therefore the residue is

(= 1)7/nn?



b)

Use the substitution z=e!*, dz=1izdx and integrate around the unit circle. Noting
that cos z = (e'* + e7**) = (2 + 1/2)/2 and that similarly sinz = (z — 1/z)/2i, the

complex integral is
4 4
1 1 1\ dz
I-—-274~ (Z+;) +(Z"—Z‘) iz

The integrand has a pole at z = 0, and to get the coeflicient of 1/2z in the Mac-
lauren expansion, note that

4 3 2
i) = z4i4i+6ii4i+i4
z z 22 2z

and that we need the constant terms from the parenthesized expressions, which
together have a coeflicient of 12, so using the residue theorem, the integral is

Jordan’s Lemma states that the integral of g(z)e!™? where m >0 and g(z) — 0 as
|z] = oo, along a semicircle of infinite radius in the upper half plane, is zero. If
m < 0, complex conjugation implies that the integral vanishes along a similar semi-
circle the lower half plane.

The real function is even, so extend the integration over the whole of the real axis,
and consider the complex version of the integral, using z==z,

1 cosmz dz = 1 eimz+e_imzdz
2/ z24a? T4 22+ a?
For the first term, complete the contour in the upper half plane, for the second

term in the lower half plane, and the integral vanishes on the semicircles due to
Jordan’s Lemma. The two integrals are

1 eimz
Z?{ 22+ a? dz
1 e—imz
Z?{ 2%+ a? dz

The poles of the integrand in both cases are at z = *+ ia. We no compute the
residue of the first integrand at z=1ia, the pole which is inside the contour.

and

I . 1 eimz 1 eim'i.o,
_— X =
Jim (2 =i0) X =) © 1GaTia)
= e ™%/8ia
The residue of the pole at z = — {a is just the negative of this, but note that the

second integral reverses sign because it goes around its residue clockwise, so the
contributions of the two integrals are the same. Using the residue theorem, the
integral is given by

-ma T

e
27 X 2 =_——e~ma
mxex 8ia 2ae
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Question 3
(a)

The volume of material used M is the volume of the two ‘ends’, (R +)*¢ each, plus the volume

of the cylinder n[(R + t)2 —R? ]H . Hence
M= 27r(R+z)2z+7r[(R+z)2 - RZJH

So the optimization problem is to minimize
F(RH)=2m(R +1)%t + n[(R+z)2 - RZ]H

subject to V=nR’H [10%]

(b)

. Vv v
Substituting H = — FR)=2m(R+1)*t + ,r[(RJ, 02— RZ]
T

7R?
2
F(R)=27(R +1)%1 + V{(l +%] - 1} [10%]
()

2
. 10
For the values specified  f(R) = 207(R+10)* + 10007{[1 + —R;] ~ 1}

For the GSLS method g =(0.382
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Hence Is=7.64 cm < R<8.37cm [40%]
(d
2 A% | 5 2t 12
R)=2nR+)t+V||1+—| -1 |=22"n(R+ ) t+V|—+—
J(R) ( ) ( RJ ( ) R R
df 2 21 [ 1 ¢ }
—“—=4a(R+t)t-V|—=+— |=4n(R+ )t - 2Vt| —+ — 1
g~ TR [RZ RJ (R+) R? R M



42
L 4mt+ 2Vt[—2§+ }i]
R

dR? R*
42
Foraminimumizo and ——i>0.
R dR?
df 1 t
F 1 —=0 = 4aR+t)-2Vt| =+—|=0
rom (1) R (R+1) [R2 RJ

2
47[(R+t)t—;V;[R+t]=0
3
R=2 o r=|L
2r 2n
2

. . . d .
From (2) it is clear by inspection that dIT]; >0 for any positive value of R.

3110007 _
2r

2
2 2 3
Hence H=L2=K[_”J3 = ﬂ
TR T\V Vn

3[4 % 1000
H= |22 32000 =15.874 cm
T

3500 = 7.937 cm

For the values given in part (¢) R=
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(4)

This confirms that the GSLS is converging on the correct value. The order of convergence of GSLS

is 1.618 (the golden ratio) — hence the method’s name.

As (3) and (4) show, perhaps surprisingly, the optimal value of R does not depend on ¢.

[40%]
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Question 4
(2)
We want to maximize the surface area of the tubes
S=2NnrL
where r is the radius of the tubes, N is the number of tubes and L is the length of the tubes (which is

fixed in this case).
There is an upper limit on the cross-sectional area occupied by the tubes

A= Nrr? < 100 cm?

Hence, as a minimization problem, we have
Minimize f(N,r)=-2Nnr

subject to N7zr? < 100 cm®
r205cm [10%]

(®)

-

N

feasible
region

0.5 ¥

The two constraint equations are shown as solid lines in the figure above (with infeasible space
cross-hatched). Contours of the objective function are shown as dashed lines. The objective
improves in the direction indicated by the arrow. Hence the optimum will be at the intersection of
the two constraints (both constraints will be active).

100 100

Thus »,,, = 0.5cm and N, = = =127.3 (i.e. 127 30%
opt opt 7”'02pt X 0.52 ( ) [ o]

(©)
In standard K-TM form the problem is:

Minimize SJ(N,r)==2Nnr

subject to g = Nzr? =100 < 0

& =05-r<0

Hence L(N,r)==2Nzr + iy (Nmr® =100) + 11, (0.5~ r)

%=—27vr+,u171:r2 =0 (1)
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%% =—2NT + W 2Nrr — jt, =0 (2)
iy (Nmr® ~100)=0 3)
1 (0.5-7r)=0 “

Casel: y;=0;u, =0
(1)= -27nr=0 = r=0 = g, isviolated .. impossible
Case2: (;=0; u, >0
(1)= -2zr=0 = r=0 = g, is violated .. impossible
Case3: y; >0,y =0
a1 = —27rr+,ul7cr2 =0 = r=0 = g, is violated .. impossible

2
or= fy == (5)
3)= N7rr2—100=0:>N=:cOT(2) (6)

(2) = -2N7+2Nrr =0 = N =0 which conflicts with (6)
or Yy = 1 which conflicts with (5)
r

.. no solution for this case
Case4: y; >0; u, >0
(1) = 2nr+ ,ul7cr2 =0 = r=0 = g, is violated .". impossible
2

or = py =- (7)
¥
0
3) = N7rr2—100=0:>N=—1—(2) (8)
nr
(2)= —2Nm+ W 2Nnr— i, =0 =
ty =2N7(wr—1)=2Nr using (7) 9)
Thus in Case 4 there is a solution:
From (4) r,p = 0.5 cm
100 100
From (8) N, = = =127.3 (i.e. 127
®) Nop 7rr02pt 7 x0.52 ( )
2 2
From (7 =—=—=4
D =T=53
From (9) 1, =2Nn =254rn [50%]
(d)

The values of the K-T multipliers indicate the sensitivity of the optimum to the constraints. The
much higher value of y, indicates that there will be a proportionately greater increase in the heat
transfer area if smaller pipes can be used (reducing the limit on ) than if the cross-sectional area
occupied by the tubes can be increased. [10%]



