ENGINEERING TRIPOS PART IIB

Wednesday 6 May 2009 2.30to 4

Module 4A8

ENVIRONMENTAL FLUID MECHANICS
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments: Data sheets (5 pages).
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1 The geostrophic flow is governed by the following equation

where the symbols have their usual meaning. Take the rotation rate vector Q = (0,0, ;)
as a constant.

(a) What is the physical interpretation of this equation? Is the equation valid for
planetary boundary layers?

(b) Show that the vertical component of the vorticity, @ = V x u, is related to
the Laplacian of the pressure. Also, show that, when the pressure field is continuous, the
geostrophic velocity field satisfies V- u = 0.

(¢) The air density p can be expressed as p = po(1 — & 0), where « is the
volumetric thermal expansion coefficient and 6 = T'(z) — T'(0), with T'(z) the temperature
at height z and 7'(0) the ground temperature. A wind can result when the horizontal
gradient of 9 is sufficiently large. This wind is called thermal wind and is governed by

_81 8_6 and ZQZ@ = —gaa—e,
9z dy

where u and v are the horizontal components of the velocity vector . Obtain the above
two equations using the hydrostatic balance equation dP/dz = —pg and the geostrophic
equation given above. Determine the vertical variation of the thermal wind components
u and v when the temperature increment varies as 8 = Ax? + By, where A and B are
constants. Comment on your solutions.
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2 Free convective flows in the environment can be approximated well by a flow
between differentially heated parallel plates. Consider two horizontal infinitely long
parallel plates separated by a vertical distance d. The bottom plate is at a temperature
Ty and supplies a uniform heat flux of Q Wm™2. After an initial transient, a stationary
turbulent flow with zero mean velocity is created. Assume that horizontal variations are
negligible. The mean density of the fluid in the gap is p and the mean specific heat
capacity at constant pressure is cp.

(a) Using the mean temperature equation from the Data Card, show that the
turbulent heat flux in the vertical direction is given by
u39 =~ i,
pcp
where the fluctuating velocity in the vertical direction is u3, the temperature fluctuation is
0, and the mean molecular heat flux can be neglected.

(b) Simplify the equations for the turbulent kinetic energy k and for the variance
o of the temperature fluctuations (given in the Data Card) for this problem. Taking the
body force in the balance equation for k as gu30/T, make an estimate for the turbulent
Kinetic energy per unit mass and its dissipation rate €. The mean temperature is 7 and the
gravitational constant is g.

(c) By taking the dissipation rate of ¢ as ¢, 0 €/k, where ¢ is a constant, show
that the mean temperature at d /2 is

~ (l—dd)3/4,
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3 (a) Discuss briefly three of the major pollutants usually found in urban areas in
terms of their sources, chemistry, health impacts, and diurnal variation.

(b) A lake of volume V; contains water contaminated by a pollutant at
concentration ¢g [units: kg m‘3]. At time ¢t = 0, a water stream begins to flow into the
lake at a constant volume flow rate Q carrying the same pollutant at concentration 2¢y.
Show that, if there is no outflow from the lake, the subsequent evolution of the pollutant
concentration ¢ in the lake obeys

o, (L e\
b > (1+V0> '
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4 (a) Discuss briefly, using appropriate sketches, typical shapes of plumes from
continuous sources in a uniform wind, including comments on the relevant atmospheric
stability and inversions.

(b) Find the necessary relation between the dispersion coefficient ¢ and the
diffusivity K for the one-dimensional Gaussian equation in the Data Card to be a solution
to 5

03 _ 20
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Rotating Flows

Geostrophic Flow

Ekman Layer Flow

OR

Solution is

4A8: Environmental Fluid Mechanics

Part I: Turbulence and Fluid Mechanics
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Turbulent Flows — Incompressible

Continuity Equation VelU-= Ui =0
ax,-
, DU, oP 9%,
Momentum Equation —t=——x L+ F,
PDi ox, ~ ox?
DT 0’T
Enthalpy Equatio —=—k—
py Equation P, P
Reynolds Transformation U, = U, +u; etc
Reynolds Stress =—pu;;, Reynolds Heat Flux =-pc,u ;0
Turbulent Kinetic Energy. k, Equation
Dk _ —Zt_,u—,cE -£+ I + transport of kinetic energy forms
Dt ox, P

Mean temperature equation

DT 9 (,0T —
P CPE‘axj[ﬂ ax, %P CP]

Temperature variance, ¢, equation

E = —2uj_®a—T — &, +molecular diffusion
Dt ox

J

In flows with thermally driven motion

L =% o Qu;, i = Vertical direction
P T
u”
Dissipation of turbulent kinetic energy E= A
3 1/4
Kolmogorov microscale n=|—
£

u’?

Taylor microscale (A) e=15v 7 (vis the kinematic viscocity)



Density Influenced Flows

Atmospheric Boundary Layer
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Buoyant plume for a point source
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(1) and (iii) give

ﬂ'Rzm{p”—_B] g =constant = F, (buoyancy flux)
Pa

U, =ow
(oo = Entrainment coefficient)

N2=_84dp_gdl
pdz T dz

Actually g (d—T _ar j
DALR

T\dz dz
N = Brunt — Vaisala Frequency or Buoyancy Frequency




4A8: Environmental Fluid Mechanics

Part II: Dispersion of Pollution in the Atmospheric Environment
DATA CARD

Transport equation for the mean of the reactive scalar ¢:

%+_ 6(,75__ 9 [K65J+@
J

u] =
Ot axj Oox ; axj

Transport equation for the variance of the reactive scalar ¢ :

—\2
§g+ﬁj o2 = 0 K % +2K % __2 g+2W
at ax] ax] ax] ax] turb

Mean concentration of pollutant after instantaneous release of Q kg at =0:

— _ 0 1 (x=x)? | -y | (z—z)
(15(36,)/,2,1)—8(721)3/2(KxKyKZ)l/2 exp{ 41[ ra + X + e

b% z
Gaussian plume spreading in two dimensions from a source at (0,0,zp) emitting Q kg/s:

2 2
2n Uo 0, 20-5 207

z

One-dimensional spreading from line source emitting Q/L kg/s/m :

oy 2 1 v
¢(x’y)_UL V2ro, eXp{ 2051

Relationship between eddy diffusivity and dispersion coefficient:

o’ =2£K
U



