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1 Child-resistant containers are commonly used to store oral medication (both tablets
and liquids). The most popular containers currently issued by pharmacies require the
patient to push and twist the cap in order to access the medication. However, this can be a
difficult task for many older patients, particularly for those with arthritis. You have been
commissioned by the UK Department of Health to design a new, more accessible, yet safe
container.

(a) Abstract the task to at least four levels and prepare an appropriate solution-
neutral problem statement.

(b) List six key requirements for your new container.

(c) [Establish the overall function for the container. Identify up to four sub-
functions and arrange these in a process function structure.

(d) Describe, with detail of key features, a concept for a new container.

(e) Describe how the new container might be proven to be fit for purpose.
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2 A soft drinks manufacturer wishes to introduce a novel device into their existing
packaging to improve the flavour and appearance of the drink. The device, currently still
under development, will need to be inserted into the packaging immediately before filling
and sealing the pack.

The manufacturer wishes to launch the new product for the seasonal market in ten months
time. In addition, they propose to use their existing filling line to manufacture the product.
However, whilst there is space to introduce new equipment, the existing line must be kept
operational for one eight hour shift per day.

The current line processes packs in batches of 360 at a time (taken from a pallet) at a rate of
one batch every three minutes. The new devices will be supplied to the manufacturer
loosely packed in boxes containing 1000 devices. Adjustments will need to be made to the
filling machine to accommodate a taller pack and to the check-weighing equipment to
accommodate the increase in pack weight.

Discuss a range of project management approaches the developer of the new device and the

soft drinks manufacturer might adopt to maximise their chances of delivering the new
product to the market on time.

(TURN OVER
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3 The main components of a gas spring used in a medical device are an aluminium
pressure vessel and a piston sealed by two O-rings, as shown in Fig. 1. During manufacture
the pressure vessel is first filled with gas (Fig. 1a), and then the piston is pushed up into the
pressure vessel and latched in position (Fig. 1b). Table 1 shows a failure modes and effects
analysis (FMEA) of the gas spring.

Fast fracture of the pressure vessel will occur if the stress intensity factor K is equal to the
critical stress intensity factor (facture toughness) Kjc of the aluminium. X is a function of
the pressure p and the maximum size a of cracks in the pressure vessel wall. Both p
and a may be assumed to be normally distributed random variables, where the given limits
cover six standard deviations. To determine the probability of fast fracture you should
assume that K is also normally distributed. Relevant data is given in Table 2.
The probability of an O-ring being faulty is 10,

(a) Draw a fault tree for gas leakage from the gas spring.

(b) What is the probability of gas leakage from a gas spring?

(¢) Comment on the accuracy of your calculation.

(d) Suggest how the design of the gas spring might be improved to reduce the
probability of gas leakage, and comment on the likely effectiveness of the improvements.

(cont.
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Fig. 1
Gas spring FMEA
Component | Function, Failure, | Failure causes | Effects on system
states modes
Pressure Holds gas Fast Defect in wall | Gas leakage
vessel fracture | too large
Upper O-ring | Seals piston O-ring | Faulty O-ring | Lower O-ring takes
leaks pressure
Lower O-ring | Back-up for O-ring | Faulty O-ring | Gas leakage (if upper O-

upper O-ring

leaks

ring has also failed)

Design data for gas spring

Table 1

Property

Formula, value or range

Stress intensity factor

K=0'\/g

Critical stress intensity factor for aluminium

K,.=22 MPam'?

Fast fracture condition K=K,

Hoop stress in pressure vessel wall oc=prit
Pressure vessel radius r=10mm
Pressure vessel wall thickness t=1mm
Filled pressure p=>50+9 MPa

a=03+03mm

Maximum crack size

Table 2

(TURN OVER
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4 A nuclear engineer has been asked to design a flask to contain a certain volume ¥V of
some highly radioactive nuclear waste. In order to shield workers adequately the walls of
the flask must be of a certain thickness ¢. The engineer has decided to make the flask
cylindrical. The interior cavity in which the waste will be stored will be of radius R and
height H, as indicated schematically in Fig. 2.

In order to provide effective shielding the material from which the flask will be made is
very dense. The engineer therefore decides to minimize the volume of material used in the
construction of the flask. As ¢ is fixed, the design variables are R and H.

(@) Formulate this task as a constrained optimization problem with one equality
constraint.

(b) By using the equality constraint to eliminate H from your expression for the
objective function, show that the task can be formulated as an unconstrained univariate
minimization problem with an objective function

2
F(R) = 27(R+ 1)1 + V{(l + %] - 1}

(c) Estimate, using a Golden Section line search, the value of R that minimizes f
for the case where ¥ =10007rcm> and #=10cm. A suitable initial interval for R is
between 5 and 10 ¢cm, and the search can be halted when the interval has been reduced four
times.

(d) (i) By using appropriate optimality criteria find an analytical expression in
terms of ¥ and ¢ for the value of R that minimizes f.

(ii) Hence find the optimal flask design for the case detailed in (c), and
comment on the performance of the Golden Section line search.

(iii) How does the optimal flask design for a given value of ¥ change with
the wall thickness ¢ ?

(cont.
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1.0 OPTIMIZATION
DATA SHEET

1.1 Series

Taylor Series

For a function of one variable:
flxg +6)=flxz)+6f '(xk)+—;—§2 f"(xz)+... where xpiq=x;+9
For a function of several variables:

§_xtH(ggk)Q+... where X;.1=X;+0X

£y +8x)= £ )+ {VEQy )l 6 x +

N | =

where {Vf (; k )}t is the Grad of the function at x :

[af(&k) of (x ) of (x) ]

ox4 OXy ox

and H(g(_k) is the Hessian of the function at (x; ):

) ) | 0%(x)]

6x12 8x18 X2 6x16 Xn

0*1(xs)

6x26 X1

Ply) il | i)

6xn6 X1 6xn6 X2 axnz

Note: 1. Vf (Jg k) is defined as a column vector.

2. The Hessian is symmetric.
3. If f{x) is a quadratic function the elements of the Hessian are constants and

the series has only three terms.



1.2 Line searches

Golden Section Ratio = ~ (0.6180

J5-1
2

Newton’s Method (1D)

When derivatives are available: xpa1 =xp — {0 (VP (x )

When derivatives are unavailable:

(xzz —x32)f(x1)+ (x32 “xlz)f(XZ)"' (x12 —xzz)f(x3)
(xp —x3) £0xg )+ (x3 — x1) £(x2) + (xg — x5 ) £(x3)

1
X4=5

1.3 Multidimensional searches

Conjugate Gradient Method

To find the minimum of the function
1, ¢ . .
fix)y="f (50)+ \%i (go)t ox+ 565 HOx, where O0x=x- x, and x has n dimensions:

First move is in direction s, from x,where:

so = - Vilxo)
Then Xpp =Xp sy
-5, VIi{x
where oy = ‘kt—(’k) (which minimises f(x) along the defined line)
Sk Hﬁk
Then Sk =—Vf (£k+1)+ Bresi
\Y% H
where B = f (ﬁktﬂ)t Sk
sy Hsy

For a quadratic function, the method converges at x .



Fletcher-Reeves Method

To find the minimum of the function f(x) where x has n dimensions:

First move is in direction s, from x( where:

so ==V (xo)
Then Xj4q =Xy +ay s, such that f(x) is minimised along the defined line.
Then Skl =7 Vf()ﬁkﬂ ) + BreSk
\
Where ﬂk _ ( f(ikﬁ—l ))2

\ViET)s

For quadratic functions, the method will converge at x,, . For higher order functions,

the method should be restarted when x,, is reached.

1.4 Constrained Minimisation

Penalty and Barrier functions

The most common Penalty function is:

q(y,zc_)=f@+§ (max(o,g,(s)) P

i=
where f{x) is subject to the constraints g; ()5) <0,..,8,(x)<0

A typical Barrier function for the same problem is:

q(ﬂ,z)=f(£)—ﬂ§gi(z)_l



2.0 STATISTICS DATA SHEET

2.1 Standardised normal probability density function

f(2) 2

1 a
P(z<a)=E—£e

ol

dz

-
H z

z 0.00 0.01 002 003 004 005 006 007 008 0.09

0.0 | .5000 .5040 .5080 .5120 .5160 .5199 .5239 5279 5319 .5359
0.1 .5398  .5438 5478 5517 5557 5596 5636 .5675 .5714 5753
0.2 5793 5832 5871 5910 5948 .5987 .6026 .6064 .6103 .6141
0.3 6179 6217 6255 .6293 6331 6368 .6406 .6443 6480 .6517
0.4 .6554 .6591 .6628 .6664 6700 .6736 .6772 6808 .6844 .6879

0.5 6915  .6950 .6985 7019 7054 7088 7123 7157 7190 .7224
0.6 | .7257 7291 .7324 7357 7389 7422 7454 7486 .7517 .7549
0.7 | .7580 7611 7642 7673 .7704 7734 7764 7794 7823 .7852
0.8 7881 7910 7939 7967 .7995 8023 .8051 .8078 .8106 .8133
09 | 8159 .8186 .8212 .8238 .8264 .8289 8315 8340 .8365 .8389

1.0 | .8413 8438 8461 .8485 8508 .8531 .8554 .8577 .8599 .8621
1.1 8643 8665 .8686 .8708 .8729 8749 8770 .8790 .8810 .8830
1.2 | .8849 .8869 .8888 .8907 .8925 8944 .8962 .8980 .8997 .9015
1.3 9032 9049 9066 .9082 9099 9115 9131 9147 9162 9177
1.4 | 9192 9207 .9222 9236 .9251 .9265 9279 9292 9306 .9319

1.5 9332 9345 9357 9370 9382 .9349 9406 9418 .9429 9441
1.6 | 9452 9463 9474 9484 9495 9505 9515 9525 9535 .9545
1.7 | 9554 9564 9573 9582 .9591 .9599 9608 9616 9625 .9633
1.8 9641 9649 9656 9664 9671 9678 9686 .9693 .9699 .9706
1.9 | 9713 9719 9726 9723 9738 9744 9750 9756 .9761 9767

20 | .9772 9778 9783 9788 9793 9798 .9803 .9808 .9812 9817
2.1 9821 9826 9830 .9834 9838 9842 9846 9850 .9854 .9857
22 | 9861 9864 .9868 9871 9875 9878 9881 9884 .9887 .9890
23 | 9893 9896 .9898 9901 .9904 .9906 .9909 .9911 9913 9916
24 | 9918 9920 .9922 9925 9927 .9929 9931 9932 9934 9936

2.5 9938 9940 .9941 .9943 9945 9946 .9948 9949 9951 .9952
2.6 | .9953 9955 .9956 9957 9959 9960 .9961 .9962 .9963 .9964
2.7 | 9965 .9966 9967 9968 9969 9970 9971 9972 9973 .9974
2.8 | .9974 9975 9976 .9977 9977 9978 9979 9979 .9980 .9981
2.9 | .9981 9982 9982 .9983 .9984 .9984 9985 9985 .9986 .9986

3.0 | .9987 .9987 .9987 9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 9990 .9991 .9991 9991 9992 9992 9992 9992 9993 9993
3.2 | 9993 .9993 .9994 9994 .9994 9994 9994 9995 .9995 .9995
33 | 9995 9995 9995 9996 9996 9996 .9996 .9996 .9996 .9997
34 | 9997 .9997 .9997 9997 9997 9997 9997 9997 9997 .9998

TABULATED VALUES



2.2 Moments of a randomly distributed variable

Expectation

o) b
E [g(x)] = _[g(x) f(x)dx where Pla<x<b)= _[ Sfr(x)dx

a

Central and non-central moments

Moment Definition Name Normal
Distribution
1°' non-central E[x] = 11, Mean H
1% central Elx-p,]=0 0
d -
2"¢ central El( X )2 _ 0'x2 Variance o2
3" central E\(x-p, )3 Skew 0
4™ central E(x— s )4. Kurtosis 354

Due to its symmetry the odd central moments of a normal distribution are all zero.
The even central moments of a normal distribution are given by:

.....

Relating central and non-central moments

i=0 i=0

Blox-s)" |- E{i@x"(—ux)”"} - imwx)”"ﬁ[x"]

B |- Bk G- )+ 10" - i(’;JE[(x_ﬂx)ian—i
" i=0

!
where " =NC, =
i ri(n—r)!



2.3 Combining distributed variables

For the function y= g(xl, X9,y Xy )

where x;, x5 etc. are independent and defined by their respective distributions:

Exact formulae for one and two variables

y 7] 2
b4 G'y
1 xt+a Uy +a 0.2
X
2 ax ap, a20_x2
3 ayx;+azxy aiy +ar iy a120_12 + a220_22
4 X1X2 M ,U120'22 +,u220'12 + 0'120'22
. 5. (Normal x1/xy /! py 1 /1120'22 + #220_12
distributions only) 5 5 5
25} Hy + 0

Where: 4 =mean; o = standard deviation; a = constant.

Approximate formulae

2 2
1]|o°g| 2,|0¢ 2
My = g(ﬂ1,ﬂz,----)+5 [—7} oj +[ 5| o2+
M M

2 2
o x| | o2y B 2.
0xq p 0xy




