ENGINEERING TRIPOS PARTIIB

Friday 24 April 2009 2.30 to 4

Module 4C8

APPLICATIONS OF DYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
4C8 datasheet (4 pages)

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the
questions printed on the subsequent pages

of this question paper until instructed that
you may do so by the Invigilator




1 (a) Figure 1 shows a railway wheelset with effective conicity &, average wheel
radius » and track gauge 2d, moving along a horizontal track with radius of curvature
R at steady speed u. It has small lateral tracking error y and small yaw angle 6. The
coefficients of both lateral and longitudinal creep of the wheels are C.

Show that the net lateral force Y and net yaw moment N acting on the wheelset due to

the creep forces are given by:

Y=2C(9+—y—)
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and indicate their directions on a sketch of the wheelset. State your assumptions.

(b) Figure 2 shows a bogie, comprising two such wheelsets, connected together

by arigid frame at a spacing of 2a.

(1) Derive an equation for the motion of the lateral tracking error y of
the centre of the bogie, incorporating the radius of curvature of the
track.

(i) Find an expression for the wavelength of the hunting motion on
straight track. Compare it with the hunting wavelength of a free
wheelset.

(iii) The bogie runs along a track which has a lateral displacement that
varies sinusoidally with a wavelength L that is double the hunting
wavelength in (ii), and has amplitude A. What is the amplitude of the
lateral tracking error?
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2 (@) The castered wheel shown in Fig. 3 is towed behind a moving vehicle by a
frictionless joint at P. The distance from P to the contact point Q is a. The moment of
inertia of the caster and wheel assembly about P is I, and the coefficient of lateral
creep of the wheel is C. Point P moves with steady forward speed # and no lateral
velocity. Attime ¢ =0 point P is given an additional speed component of y =V in
the lateral direction, with v <<u. Sketch a graph of the variation of the caster angle &
(assumed small) as a function of time, showing salient values.

Use the following data: a = 0.05m; I=5x104kg m2; v=0.1 m/s; u=1m/s;
and C = 40 N/rad. [50%]

(b) The contact between a pneumatic tyre and a road surface can be modelled as
a ‘brush’ with a circular contact area of radius @ and stiffness per unit area of K in
the lateral direction. Assuming no microslip in the contact area (i.e. full friction),
calculate the lateral force Y when the tyre rolls with a small yaw angle & to the
rolling direction. State your assumptions. [50%]



3 (a) Show, with the aid of diagrams if necessary, that the external gravitational
potential of a uniform sphere with mass M is the same as that of a point mass M located
at the centre of the sphere. Would this result be changed if the density of the sphere

varied with radius?

(b) (@)

(ii)

A body of mass m moves in a closed Keplerian orbit under the
gravitational attraction of a fixed body of mass M. Using the
equations in sections 4 and 5 of the data sheet, derive an equation for
the shape of the orbit.

By considering the periapsis of the orbit, show that the total energy F
of the orbiting body is given by:

22
g oy
where e is the eccentricity of the orbit, and 4 is the angular
momentum per unit mass. For what range of values of e is the orbit
closed? And for a given value of A, what orbit shape corresponds to
the lowest value of E?
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4 (a) Explain the physical origin of the J, term in the expression for the external
potential of the Earth given on the data sheet.

(b) A thin ring of matter, with radius R and total mass m, is centred at the origin
of a system of spherical polar co-ordinates, with its axis of symmetry coinciding with
the polar axis, as shown in Fig. 4. Show that the gravitational potential at point P,
whose co-ordinates are (r, 6, 0) can be written as:

_mG ZT dg

U=
27§ Jr* + R —2rRsinOcos ¢

(c) For the case where r >> R, use the binomial theorem to evaluate this

integral approximately, keeping terms up to the order R/

(d) The Earth can be modelled as a uniform sphere of mass M and radius R plus
an additional ring of the type investigated in part (b) around the equator, such that
Mgath = M + m. Use the expression derived in part (c), and the value of J, in the data
sheet, to determine what fraction of the Earth’s total mass should be modelled into the

ring.

 x 7
~ [0

Fig. 4

END OF PAPER

[15%]

[30%]

[35%]

[20%]



Engineering Tripos Part 1IB
Data sheet for Module 4C8: Applications of Dynamics

DATA ON VEHICLE DYNAMICS

1. Creep Forces In Rolling Contact

1.1 Surface tractors

Longitudinal force X= ch dA
A
Lateral force Y= Ucy dA
A
Realigning Moment N = ”(x c,-y cx)dA
where A

Ox, Oy = longitudinal, lateral surface tractions
x, y = coordinates along, across contact patch
A = area of contact patch

1.2  Brush model

ox=Kx gx, oy=Ky gy for \/Gi +6 <pup
where
gx> g9y = longitudinal, lateral displacements of 'bristles' relative to wheel rim
Ky, Ky = longitudinal, lateral stiffness per unit area
u = coefficient of friction

p =local contact pressure

1.3  Linear creep equations

X=- ué
Y=-G,a-Cpy
N =Cha-Cpy

where X, Y, N, are defined as in 1.1 above.

C; = coefficients of linear creep
¢ =longitudinal creep ratio = longitudinal creep speed/forward speed
o = lateral creep ratio = (lateral speed /forward speed) - steer angle

Yy = spin creep ratio = spin angular velocity/forward speed
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2. Plane Motion in a Moving Coordinate Frame
Ry, = (@ —vQ)i+(¥+uQ)j
(i, j, k) axis system fixed to body at point O

where
u = speed of point Oy in i direction
v = speed of point O1 in j direction

Qk = absolute angular velocity of body

3. Routh-Hurwitz stability criteria

&  d
azzt-i+a12—+a0 y=x(t) Stable if all a; >0
d? d? ] Stable if (i) all a; >0
“ dr’ ’ a,2 dt? ta dr +ao Jy=x(0) and also (ii) aja; > apa;
a L& d. i Stable if (i) all a; >0
“ ar* Car " P  a % |y =x(1) and also (ii) gjapa3 > a0a32 + a4a%
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DATA ON POTENTIAL THEORY AND ORBITS

1 For a distribution of mass with density p(r) the gravitational potential U satisfies Poisson’s
equation

VU = -4nGp

where G is the gravitational constant (= 6.67x10"' Nm’%g?). The gravitational force F
experienced by a unit mass is given by

F=VU,

2 Invacuo p =0, so that U satisfies Laplace’s equation

ViU =0,

3 For a point mass M at the origin

Ur)=GM /x| .
For a general distribution of matter

U(r ijjp(xd X .

[r—x]

For a thin spherical shell of radius ¢ and mass dM

U= {GdM/lr[, r>a
GdM/a, r<a

4 Equations of motion for a particle in a plane orbit, in plane polar coordinates (r, 9):
F-r®’=f  rB+20=f,
where f,, f, are the radial and transverse force components, per unit mass.

If =0 (i.e. for a central force) the second equation leads to conservation of angular
momentum:

r*Q = h = constant .

5 For a central force, the substitution = 1/r leads to an equation for the shape of the orbit,
expressed as u =u(6). The central force (assumed attractive) is described by a function fu) per
unit mass, and for a given angular momentum per unit mass # the orbit satisfies

LI {C)N
692 h2 2
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6 The equation of an ellipse in polar coordinates (r, G) relative to a focus is

L

= where e is the eccentricity.
(1 +ecos0) ty

The semi-major axis is g = L/(l —e? ), the semi-minor axis is b= L/V1-e*

7 The mean anomaly M, the eccentric anomaly E and the true anomaly 0 are related by

M=E—esinE and cosO= cosE-e where e is the eccentricity.

l-ecosE

8 Spherical polar coordinates. Define (r,6,¢) so that r is radial distance, 6 is angle from the
polar axis (co-latitude) and ¢ is the angle of longitude. Then:

VU—a—U, lé’U6+ 1 6’Ucqb
or r 00 rsin@ o¢

VZU_Li[rZ%]ﬁL 1 al: 9@_] 1 o’U
20 or | r*sin@ 90 09 | r*sin’*0 8¢

9 Axisymmetric solutions to Laplace’s equation arising from separation of variables in
spherical polar coordinates are

r"P,(cos6)
Ulr-0)= {r P (cos0)

where P, is the Legendre polynomial of order », describing the nth zonal harmonic. The first
few Legendre polynomials are as follows:

RE)=1 RE)=t PAE)=Be-1)2
PE)=(s5-38)2  B(£)=(358" ~3057 +3)/8

10 The external potential of the Earth can be expressed as a sum of spherical-harmonic
contributions. We consider in detail only the effect of the zonal harmonics, whose contribution

can be written in standard form

U(r,0)= [1 Z(R/r ) J,B,( cosB)}

For the Earth, pt= GxMgam = 398603 km’s?, mean radius R = 6378 km,
J, = 1082x107%, J; =-=2.55x% 107°%, J, = -1.65x10°¢
Gravitational mass of the sun = 332946y, gravitational mass of the moon = 1/81.3

Mean radius of Earth’s orbit = 1.496 x 10° km, that of moon’s orbit = 384400 km.
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