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Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.
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1 (a) If eafy 1s the alternating tensor:

(i) demonstrate that e;,;,,€;,m =6 ; [15%]
(i)  simplify the expressions e 503;Vk » €nming aNd eV, ji - [35%]

(b) Figure 1, which is drawn to scale, shows part of a slip line field. At the origin,

the state of stress is Oy, =15 MPa, 7,, = 50 MPa and 0, =185 MPa. Use the Hencky
[50%]

equations to estimate the stress at point A.

B characteristics

o characteristics




2 A thin, square-section, metal wire is stretched in a tensile testing machine. Between
the grips of the machine, the wire passes through a sealed pressure vessel which can apply
any constant compressive pressure p. The testing machine loads the wire by applying a

stress ¢,, which increases linearly with time ¢ so that o, = at.

(@) Write out the full deviatoric stress tensor for that length of the wire which
is inside the pressure vessel and show that the Von Mises equivalent stress is given by the

expression 0= p+0,,.

(b)  The wire obeys the Swift hardening law Y =C(gg+&)" where Y is the
yield stress and &y, C and n are material constants. It does not yield until

G>C(g)". Derive a formula for the strain &, of the wire along its length as a function

of time.

(c) Sketch a graph illustrating the way in which &,, grows with time showing

clearly the effect of increasing the pressure p from zero.

(TURN OVER

[35%]

[35%]

[30%]




3 Figure 2(a) shows a curved beam of constant cross-section whose outer surface is an
arc of radius & and inner surface an arc of radius a. The angle subtended by these two
arcsis /2 . The two ends of the beam are subject only to bending moments of magnitude

M asindicated.

(a) Explain why there will be a bending moment of magnitude M but zero axial and
shear forces for all values of 6 between 0 and /2 and why this implies that a

suitable Airy stress function is

¢=Ar®+ Br¥Inr+Clnr+ DO

(b)  Verify that using this function

Ogg =2A+ B(2Inr + 3)—r£2

and obtain the corresponding expressions for o,, and 6,9 .

(c) Explain the steps whereby the constants A, B,C and D may be evaluated from the

expressions found in part (b). If

M
A= —(b2 —a?+2% b - 242 ma)
N

B =_T(b2 -az)

c=—f£1a2b21n(b/a)

find an expression for N in terms of the dimensions g and b .

(d)  Explain how this analysis might be used to estimate the maximum tensile stress on
the surface of the fillet, which has radius a, and which forms part of the component shown
in Fig. 2(b). The component has uniform thickness ¢ and the dimension b =na. Obtain
an expression for this estimate of stress in terms of the applied moment M , the dimensions

a and t, and theratio n.

(cont.

[20%]

[20%]

[35%]

[25%]




Fig. 2(b)

END OF PAPER
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SUBSCRIPT NOTATION

Repeated suffix implies summation

a=a e +aqey +ae;3 ae;
aeb aib; = a;b;0;;
c=axb i = €ajby
d=ax(bxg) Ay = —eijkbrs abycy = ajbicj — aibicy
Kronecker delta §; §jj=1for i=j and §;;=0 for i#j
Eijk ejj =1 when indices cyclic; =~1 when indices anticyclic

and = 0 when any indices repeat

e—& identity eijk€itm = 0 j10km = 0 jmbu
tracea tra=a; =ay + ap +as3
80',-1-_80'1j+80'2j+80'3j o-ij,i
axi axl 3x2 (9x3
grad¢ =V¢ B _y
ax,- g
divV Vii
curlV=VYxV ik Vi, j

Rotation of Orthogonal Axes

If 01'273” is related to 0123 by rotation matrix a;;

vector v; becomes Vo = QuiVi

tensor oj; becomes OapB = agiapi0ij
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Evaluation of principal stresses

deviatoric stress §;; = 0y

0'3 —110’2"}"126—‘]3‘:—0

S3-'JIS2+128-—'J3 =0

equilibrium

small strains

compatibility

Linear elasticity
Hooke’s law

Lamé’s equations

equivalent stress

equivalent strain increment

Elastic torsion of prismatic bars

1

3 Oudyj

Il =0;=tro
1
Iz :}’g(‘fﬁ% ~ 0;0)
1
I3= e (eijkepqro'ipdqukr)
. 1 -
Jl =8 = trs ; Jz = Esijsl'j 5 J3 =§Sijsjkski

o-ij’i+bj=0
1oy ) 1
Eijzz &J—"'gl ='2'(”i,j+”j,i)

Eij kil Exi,ij ~ Elj ki ~ Eki ljepik jtEijhd =9

828,1

— =0
8xk8x

equivalent to epieqi€ij i = €pikeqjl

0ij = Cijpi€ri
Eg;j=(1+v)o; —vod;

g=

3
Esijsij = "3.’2

_ (2
de = gdeijde,-j

Warping function ¥(x,x, )satisfies V¥ = ¥i=0

If Prandtl stress function ¢(x;, satisfies V2¢=¢ . =—2Ga where ¢ is the
1-%2 i

twist per unit length then

d
031 =¢,2=£' » 033 =—¢,1=—§z'

and T =2[[, ¢(x1, %, Jxdx
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Equivalence of elastic constants

E v G=q A
Ev - - E vE
201+ V) (A +v)(1-2v)
E G - E-2G - Qf_‘_fl(.;_
2G E-3G
E A - E-A+R E-3A+R _
42 4
v.G 2G(+ V) - - 2Gv
1-2v
v, A A1+ w)(1-2v) - A(1-2v) -
1% 2v
G A G(A+2G) A - _
A+G 2(A+G)

R=vE? +2EA+92%

Two-dimensional Airy Stress function

Biharmonic equation V4¢ =0,q0pp=0

Stresses OB = €ay €35 Prys
lifa=1,6=2
Oifx=p
-lifa=2, =1

where e,p = €308 =

Plane stress and plane strain

1
G£11 = 5{0'11(1 +K)+ 0'22(1('— 3)}

1
Gey = Eg-{022(1 +K)+ 071 (k- 3)}

%12
Gepp =—=
12 5
k=@~-v)/1+v) inplane stress and
where
Kk=3-4y inplanestrain
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Plasticity

von Mises yield criterion

generalized flow rule

Slip Line Fields

Henky equations

Geiringer equations

P —2k¢ = constant along « line

p+2k¢ = constant along 3 line

dv, do .
—==vyg— along x|

ds  Pgs & & e
dv d

FSQ =V, f along f3 line

QOct 08




Table [ - The Michell solutions — stress components

¢(r,0) Oy L Orf
r? 2 2 0
rlar 2Inr+1 2Inr+3 0
Inr /72 —1/r? 0
0 0 0 1/r2
7> cosO 2rcos6 6rcosf 2rsinf
rOsinf 2cosf/r 0 0
rinrcos@ cosO/r cos@/r sinf/r
cosf /1 —2cos6/ 2cos0/r> ~2sin6/r°
r3sind 2rsinf 6rsinf —2rcos6
r@cosf —2sin@/r 0 0
rinrsin@ sin@/r sinf@/r —cos@/r
sinf /r ~2sinf/r* 2sing /> 2c0s6 /7
P2 00sn0 | —(n+D(n—2)r"cosnd | (n+1)(n+2)" cosnd® | n(n+1)r"sinnb
712 0snf | —(n+2)n—=1)r"cosnB | (n—1)(n—2)r""cosnf | —n(n—1)r""sinng
" cosnb —n(n—1)r""2 cosnd n(n—1r""2 cosnd a(n—1)r""2 sinnd
r " cosnb -n(n+ l)r_"_2 cosnf n(n+ l)r"’_2 cosnf -n(n+ l)r""—2 sinn@
26000 | ~(n+ D(r=2)"sinn® | (u+1)(n+2)"sinn@ | -n(n+1)r" cosnd
r M 26inn0 | ~(n+2)(n—1r "sinnd | (n—-1)(n-2)""sinnd | n(n—1)r~" cosnd
" sinnd —n(n—1""?sinnf n(n—1)r""2 sinnf ~n(n-1)r""? cosnd
" sinnd ~n(n+1r " 2sinng n(n+1)r "2 sinng n(n+1)r""2 cosnd
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Table [l - The Michell solutions — displacement components

For plane strain k¥ =3-4v; for planes stress

Kk=0C3-v)/{+v)

9(r,0) 2Gu, 2Gug

r? (x —Dr 0

inr (—Drinr—r (x+Dro

Inr -1/r 0

2] 0 ~1/r

r3 cosh ( ~2)r’ cos (ic+2)r*sin@

0sind 0.5[(x — 1)@sin8 — cos O 0.5[(xk —1)8cos@ —sin@

+ (K +1)Inrcosd] —(k+1)Inrsind]

0.5[(x +1)08sin6 — cos@ 0.5[(xk + 1)8cosB —sinf

rinrcos® +(k —1)inrcos6] —(x—1)Inrsin6]
cos@/r? sinf/r?

cos@/r

r3sin@ (k- 2)r2 sin@ —(k — 2)r2 cosf

+6cosO 0.5[(k - 1)8cos8 +sin@ 0.5[-(x — 1)Bsin B — cosO

—(k+1Dlnrsinf] — (K +1)Inrcosf]

0.5[—(k +1)8cosO —sinf 0.5[(x +1)8sin@ + cos @

rinrsing +(c—1)Inrsin6] +(x - DInrcosf)

sin@/r sin6 /r? —cos/r?

P2 cosnd (- n—r**L cosnp e+ n+Dr*tsinng

r*2 cosnd (c+n—1r"cosng —(c—n+1)r"*sinng

r" cosnd ~nr" L cosnd nr" L sinnd

r " cosnf nr " cosnd nr ™" Lsinng

1 2ginno (c —n—1)r"*sinng —(K+n+ l)r/”Jrl cosnd

2 G o (x+n—1r " sinng (c —n+1r " cosnd

r"*sinn6 —nr" Lsinng —nr" L cosn

r " sinnf nr " sinng —nr~" L cosnd

JAW/IMA
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Answers
1 @@M6 () —vg; 65 vj;i—Vj
(b) ¢g =30%¢p =15%,04 =45°

O, =—157 MPa
at A Oyy = 43 MPa

Txyzo
-1 0 O
+0
2 @op=2 X0 1o
0o 0 2
1
_ +at
(b) g, =€=¢ [p ]n—l for t >1; otherwise 0
pton
C D
3 Op =2A+B(2Inr+1)+—; C9=—
r r

() N= (bz - az)z - 4a2b2(ln(b / a))2

4 2n21nn—n2+1) M
X

(n2 - 1)2 —~ 4n2(lnn)2 a’t

(d) ogg =

6M

000 =" 5
(n—l)2 a’t



