ENGINEERING TRIPOS PART IIB

Wednesday 22 April 2009 2.30 to 4

Module 4F1

CONTROL SYSTEM DESIGN

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Attachment: Formulae sheet (3 pages).

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS
Engineering Data Book
CUED approved calculator allowed
Supplementary pages: Two extra copies
of Fig. 1 (Question 3).

You may not start to read the questions printed on the subsequent pages of this question paper until instructed that you may do so by the Invigilator

- 1 (a) Let G(s) be a rational transfer-function.
 - (i) Describe how the Nyquist and root-locus diagrams of G(s) can be viewed in terms of a single mapping between two complex planes. [10%]
 - i) State the definition and properties of a conformal mapping. [15%]
 - (iii) Briefly describe an informal proof of the Nyquist stability criterion which makes use of conformal mappings. [15%]
 - (b) Let

$$G(s) = \frac{s+1}{(s-1)^2(s+7)}.$$

- (i) Sketch the root-locus diagrams for k > 0 and k < 0 on separate diagrams. [15%]
- (ii) Sketch the complete Nyquist diagram for G(s). [15%]
- (iii) Find the imaginary axis crossing points in the root-locus diagrams and the real axis crossing points of the Nyquist diagram. [15%]
- (iv) Determine the number of closed-loop poles in the right half plane when G(s) is connected in the standard negative feedback configuration with gain k, for all values of k both positive and negative. Confirm that the Nyquist and root-locus diagrams give the same assessment for closed-loop stability. [15%]

2 (a) State the small gain theorem. An uncertain system is modelled as:

$$G_1(s) = \frac{G(s)}{1 + \Delta(s)G(s)}$$

where G(s) is a known transfer function and $\Delta(s)$ is assumed only to be stable and satisfy a bound $|\Delta(j\omega)| \le h(\omega)$ for all ω . Let K(s) stabilise G(s) in a unity gain negative feedback system. Derive a necessary and sufficient condition for K(s) to stabilise $G_1(s)$. [25%]

(b) Consider a plant with transfer function

$$\frac{s+3}{s^2(s+3) + ae^{-sT}} \tag{1}$$

where $T \ge 0$ is unknown and $|a| \le a_0$ where a_0 is unknown. Suppose the controller $K(s) = \frac{3s+1}{s+3}$ is employed in the standard unity gain negative feedback configuration.

- (i) Using the result of part (a) find conditions on a_0 and T which guarantee closed-loop stability. [30%]
- (ii) Assuming T = 0 find directly the range of a in (1) for which the closed-loop system is stable. Hence comment on whether the value of a_0 derived in part (b)(i) is conservative. [25%]
- (c) For the plant and controller of part (b) with a = 0, design a two-degree of freedom control system so that the closed-loop transfer function from reference input to plant output is $1/(s+1)^2$. [20%]

- Fig. 1 is the Bode diagram of a system G(s) for which a feedback compensator K(s) in the standard negative feedback configuration is to be designed. It may be assumed that G(s) is a real-rational transfer function, and that all poles and zeros have moduli which lie within the range of frequencies shown on the diagram.
 - (a) (i) Sketch on a copy of Fig. 1 the expected phase of $G(j\omega)$ if G(s) were stable and minimum phase. [10%]
 - (ii) Determine whether G(s) has any right half plane poles or zeros (it doesn't have both), and estimate their location (if there are any). [10%]
- (b) Let S(s) and T(s) denote the sensitivity and complementary sensitivity functions. Find a feedback compensator K(s) which provides internal stability of the closed-loop and satisfies the following specifications:

A:
$$|G(j\omega)K(j\omega)| = 1$$
 at $\omega = 2$ rad/sec,

B: a phase margin of at least 45°.

C:
$$S(0) = 0$$
,

D:
$$|T(j\omega)| \le 0.01$$
 for $\omega \ge 30$ rad/sec.

Show on another copy of Fig. 1 the effect of this compensator on the return-ratio transfer function.

[50%]

- (c) Suppose it is desired to increase the crossover frequency in Specification A for the design of part (b). Briefly discuss the likely limitations if:
 - (i) All other specifications are left the same. [15%]
 - (ii) Specification D is removed. [15%]

Two copies of Fig. 1 are provided on separate sheets. These should be handed in with your answers.

(cont.

Fig. 1

END OF PAPER

ENGINEERING TRIPOS PART IIB Wednesday 22 April 2009, Module 4F1, Question 3.

Extra copy of Fig. 1: Bode diagram of G(s) for Question 3.

Formulae sheet for Module 4F1: Control System Design

To be available during the examination.

1 Terms

For the standard feedback system shown below, the **Return-Ratio Transfer** Function L(s) is given by

$$L(s) = G(s)K(s),$$

the **Sensitivity Function** S(s) is given by

$$S(s) = \frac{1}{1 + G(s)K(s)}$$

and the Complementary Sensitivity Function T(s) is given by

$$T(s) = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

The closed-loop system is called **Internally Stable** if each of the *four* closed-loop transfer functions

$$\frac{1}{1+G(s)K(s)}$$
, $\frac{G(s)K(s)}{1+G(s)K(s)}$, $\frac{K(s)}{1+G(s)K(s)}$, $\frac{G(s)}{1+G(s)K(s)}$

are stable (which is equivalent to S(s) being stable and there being no right half plane pole/zero cancellations between G(s) and K(s)).

A transfer function is called **real-rational** if it can be written as the ratio of two polynomials in s, the coefficients of each of which are purely real.

2 Phase-lead compensators

The phase-lead compensator

$$K(s) = \alpha \frac{s + \omega_c/\alpha}{s + \omega_c\alpha}, \quad \alpha > 1$$

achieves its maximum phase advance at $\omega = \omega_c$, and satisfies:

$$|K(j\omega_c)| = 1$$
, and $\angle K(j\omega_c) = 2 \arctan \alpha - 90^\circ$.

3 The Bode Gain/Phase Relationship

If

1. L(s) is a real-rational function of s,

2. L(s) has no poles or zeros in the open RHP (Re(s) > 0) and

3. satisfies the normalization condition L(0) > 0.

then

$$\angle L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d}{dv} \log |L(j\omega_0 e^v)| \log \coth \frac{|v|}{2} dv$$

Note that

$$\log \coth \frac{|v|}{2} = \log \left| \frac{\omega + \omega_0}{\omega - \omega_0} \right|, \text{ where } \omega = \omega_0 e^v.$$

Figure 1:

If the slope of $L(j\omega)$ is approximately constant for a sufficiently wide range of frequencies around $\omega = \omega_0$ we get the approximate form of the Bode Gain/Phase Relationship

$$\angle L(j\omega_0) pprox rac{\pi}{2} \left. rac{d \log |L(j\omega_0 e^v|)}{dv} \right|_{\omega = \omega_0}.$$

4 The Poisson Integral

If H(s) is a real-rational function of s which has no poles or zeros in Re(s) > 0, then if $s_0 = \sigma_0 + j\omega_0$ with $\sigma_0 > 0$

$$\log H(s_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sigma_0}{\sigma_0^2 + (\omega - \omega_0)^2} \log H(j\omega) d\omega$$

and

$$\log|H(s_0)| = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta} \log|H(j|s_0|e^v)| dv$$

where $v = \log\left(\frac{\omega}{|s_0|}\right)$ and $\theta = \angle(s_0)$. Note that, if s_0 is real, so $\angle s_0 = 0$, then

$$\frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta} = \frac{1}{\cosh v}.$$

We define

$$P_{\theta}(v) = \frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta}$$

and give graphs of P_{θ} below.

The indefinite integral is given by

$$\int P_{\theta}(v) dv = \arctan\left(\frac{\sinh v}{\cos \theta}\right)$$

and

$$\frac{1}{\pi} \int_{-\infty}^{\infty} P_{\theta}(v) \, dv = 1 \quad \text{for all } \theta.$$

G. Vinnicombe M.C. Smith November 2002

4F1 2009 — Answers

- 1(b)(iii) Imaginary axis crossings of root-locus: 0, $\pm\sqrt{5}$. Real axis crossings of Nyquist diagram: 1/7, -1/18.
 - 2(b)(i) $a_0 < 1$, no condition on T.
 - 2(b)(ii) -1 < a < 8.
 - 3(a)(ii) G(s) has one right half plane zero.

M.C. Smith, 11 May 2009