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1 (a)

Consider the linear system

X =Ax+ Bw

7=Cx

where A is a stable matrix. Let G(s) denote the transfer function of the system from w to

Z.

(b)

(i)  State the definition of ||G(s)||,. Discuss an interpretation of ||G(s)||, in
terms of the norms of w and z. [15%]

(i) Provide an expression for computing ||G(s)||, using the solution of an
appropriate Lyapunov equation. State conditions under which the Lyapunov
equation has a solution, and under which the solution is positive definite. [15%]

Consider the state feedback 5% optimal control problem

X =Ax+Biw+Byu
72=C1x+Dipu

y=x

with (A, B;) controllable, (A,C) observable and D{z [Cl Dlz] = [O I].

(i) For an arbitrary stabilising controller u = —Kx,
|21 (P(s), K(s)) |} = 2 Trace (B] LB, )

where L = LT > 0 is the solution to a particular Lyapunov equation and %]
denotes the lower linear fractional transformation. Show that this Lyapunov
equation is

(A—BK)TL+L(A—ByK)+CTCi+KTK=0

[20%]
(i) Assume X =X7T > 0 is the solution to the Riccati equation
XA+ATX -xB,BIx+CFCi =0
Using the Lyapunov equation in part (b) (i), show that
T T\ 7 T
(A—ByK)T (L—X)+ (L—X)(A—ByK) + (K—B2X) (K—B2 ) =0
Deduce that L —X > 0 if K is an arbitrary stabilising controller. [25%]

(cont,



3

(iii) Using this last fact, show that K = BgX is the controller that minimises
|- #1(P,K)||, and give the value for the minimum.
[Hint: Note that, if X = X7 > 0, then Trace(X) > 0.] [25%]

(TURN OVER



2 Consider the closed-loop transfer function from

wl} to [Zl] in Figure 1.
wa ¥e)

Wi w2
G
P TS Tt T T h
! |
! ]
1
U ~ +J:Zl+y
1 G UI o/
: + +
i |
D e e e e e e e e = 1
Z
2 K

Fig. 1

(a) Find the generalised plant P(s) such that [Zl = F;(P(s),K(s)) [wl} and
22 w2
evaluate #; (P(s),K(s)), where .#; denotes the lower linear fractional transformation. [30%]
(b) If G(s) has a state-space realisation

X=ax+ku+wy;, x€R

7] =x

where a > 0 and k > 0, find a state-space realisation for P(s), as defined in part (a), in the
following form

X =Ax+Bywy + Byu

[10%]

(cont.



(c¢) For G(s) as in part (b) find

F1(P(s),K(s))ll2

min
K(s) stabilising
as a function of a and k. [25%]
[Hint: The CARE and FARE are

XA+ATx +clc,-xBBIx =0

and
YAT + Ay +B;BY —vClcy =0,

respectively, with appropriate A, By, B,Cj,C;. Then,
1 Z1(P(s), K (5))|I3 = 27 (trace (BIT XBl) +trace (FYFT )) ,

where F = BJX. ]

(d) Give a state-space realisation for the optimal controller K in part (c), find its
pole(s) and, hence, show that it is stable. [15%]

[Hint: The optimal controller X is given by
it | | A=BoF-HC; —-H || x;
u F 0 y
where H =YCJ. ]

(e) With the same optimal controller K, give a state-space realisation for the

closed-loop system. Find the poles of the closed-loop system and confirm that it is stable.
[20%]

(TURN OVER
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3 (a) Calculate the #%4.—norm of the transfer function

s+1
(s-|-2)2

P(s) =

(b) State the small gain theorem for the robust stability of a system, Y(s) =
T(s)U(s), in feedback with an uncertain system, U(s) = A(s)Y (s), where T'(s) and A(s)
are both stable, T'(s) is known, and A(s) satisfies ||A(s)]|e < €.

(c) An uncertain system has a transfer function, G(s) = (I — W(s)A(s)) ~1Gp(s),
where Gy(s) and W (s) are known stable transfer functions and ||A(s)|| < 1. Show that
the feedback system, Y (s) = G(s)U(s), U(s) = —Y(s) will be stable for all A(s) if and
only if the feedback system is stable with A(s) = 0 and ||(I+ Go(s)) "W ()| < 1.

(d LetG(s) = mﬁ;%k_ai’ where the unknown real parameter, o, satisfies

1

531> and consider the feedback

—A < ot <A. Let the nominal transfer function be Gy(s) =
system Y (s) = G(s)U(s), U(s) = =Y ().

(i) Determine the maximum value of A such that the feedback system is
guaranteed to be stable for all || < A.

(ii) Represent G(s) as in part (c) and apply the result of part (c) to give a
condition on A for stability of the feedback system.

(@iii) Calculate N(s) and M(s) where Gy(s) = N(s)/M(s) is a normalised
coprime factorisation. Show that G(s) can be expressed as
G(s) = N(s)/(M(s)+ Ap(s)) and briefly discuss the relation between this
representation of the uncertain system and perturbations measured in the gap
metric.
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