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1 (@) Define the following for an autonomous system x = f{(x):

(1) Equilibrium point. [5%]
(i)  Stable equilibrium point. [10%)]
(iii) Asymptotically stable equilibrium point. [10%]
(iv) Domain of attraction of an asymptotically stable equilibrium point. [5%]

(b) Consider the system

X1 = —x1 +h(x3)
Xy = —h(x3)
x3 = —f(x1) +g(x2) —h(x3)

where f(0) = g(0) = #(0) =0, yf(y) >0, yg(y) >0, yh(y) > 0 for 0 < |y| < o and
f, &, h are Lipschitz continuous functions.

() By considering the function
X X2 X3
Vi) = [ 0y + [ g0)dr+ [ ho)ay
show that the origin is an asymptotically stable equilibrium of the system. [40%]

(i) For the case %&L) = d—i&l) = 0 for y = 0 discuss whether a linearization

of the system would be sufficient to deduce asymptotic stability of the origin.
[20%]

(iii) Is the origin also globally asymptotically stable? [10%)]
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2 (a) Show that the describing function of the saturation nonlinearity

1 ife>6
fley=q 5 ifle] <&
-1 ife<-6

with & > 0, is given by

1
5
NE & e ()48~ )

ifE<o

ifE>¥6

(b) Using your answer to part (a) with 6 = 1, find the describing function N, (E)

for the dead-zone nonlinearity
e—1 ife>1

gle)=4 0 if |e] < 1
e+l ife<—1

(c) Show that 0 < Nj(E) < § .

(d) The nonlinearity f(e) is connected in negative feedback with a linear system

whose transfer function is "

(s+1)2

G(s) =

(1) Is a limit cycle predicted by the describing function method when

k>07?

(i) Find the values of & for which the circle criterion would guarantee

global asymptotic stability of the interconnection.

(TURN OVER

[30%]

[20%]

[20%]

[15%]

[15%]



3 (a) In the standard formulation of model predictive control, constraints on the
state vector are expressed as linear inequalities of the form

MX<m )
where M is a constant matrix, » is a constant vector, X is the vector
T _T r
X = [xl ,xz,...,xN]

and x; is the predicted value of the state vector s steps into the prediction horizon. Explain
why it is important that constraints are expressed in this linear form.

(b) Constraints often arise in the form |xi | < ¢;, where x' denotes the i’th
component of the vector x. Explain how such constraints may be put into the form (1).

(c) Two spacecraft are in orbit around a planet. The ‘chaser’ craft is using model
predictive control to approach and dock with the ‘target’ craft, by firing thrusters which
exert forces Fy, and F, as shown in Fig.1. When the two craft are in the same orbital plane
and are close together, the target craft may be considered to be travelling in a straight
line; the tangential and radial distances from the chaser craft to the target craft, y and z
respectively, can then be defined as shown in Fig.1.

In order to dock successfully, the following constraints must be satisfied during the

final approach:

2 < 0.01ms™!
Izl < 0.1m

Write these constraints in the form (1), assuming that the prediction horizon is N = 2, and
that the state vector is defined as

X = [y,y’z)z.]T

(cont,

[30%]

[20%]

[30%)]



(d) The dynamics of the chaser craft shown in Fig.1 are given approximately by
Xgt1 = Axg +Buy,
where the input vector consists of the two thruster forces:

Fy

Uy = E
4

k

Explain how the constraints (1) can be expressed as linear inequalities involving the vector
of predicted inputs, and the latest measured state, when N = 2. [20%]

Chaser

Fig. 1

(TURN OVER



4  (a) Explain the principle of operation of predictive control, and summarise its

principal benefits and disadvantages. [30%]

(b) Predictive control is to be applied to the linear discrete-time system
x(k+1) = Ax(k) + Bu(k)
with a prediction horizon of only one step and a cost function
V(xg,ug) = ngxO + ugRuo -I-x{le

where xg is the current measured state, x; is the predicted next state when input u is

applied, P, Q and R are all positive-definite, and
P=4ATP4+Q )

Let uj(xo) denote the value of ug that minimises the value of ¥'(xo,u), and let V*(xg) =
V(xg,ug) be the corresponding minimum value of V.

(i)  Show that V' (Axg + Bug,0) < V*(xo), and hence that V* (4xo + Bug) <

V*(xg), if xg # 0. [40%]
(i) Explain how this result can be used to prove stability of the closed loop
when this predictive control is applied. [20%]

(iii) Explain why it can be deduced, from equation (2), that the open-loop
system is stable. [10%]

END OF PAPER



