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l

a) Define Information and Entropy of a probability distribution and describe, in

detail, how Maximum Entropy methods may be used to assign probability distributions. [30%]

b) Given the first moment of a distribution (from experimental measurements,

for example) show, using Lagrange multipliers, that the distribution having Maximum

Entropy is an Exponential distribution. [40%]
c) Derive an expression for the entropy of the Exponential distribution in terms of

its standard deviation. [30%])

2 a) Define Fisher Information and Cramer-Rao Lower Bound and show that for an

unbiased estimator, §(x), of a parameter 6, the variance associated with 6 (x) satisfies

var(8(x)) > 1"

where Ig is the Fisher Information for the scalar parameter 6. [40%)
b) Derive the following condition for an efficient unbiased estimator:

Ql%{lﬂ;):,e(é(x)_g) o)
where p(x|8) is the likelihood function and &(x) is an estimator for 6.
[30%)]
c¢) Describe how equation (1) leads to the Neyman-Fisher factorization theorem. [10%]

d) Using Bayesian reasoning, derive the Neyman-Fisher factorization theorem. [20%]



3 a) Define the terms Error of the first kind and Error of the second kind explaining

the role they play in Detection Theory and explain the role played by the log-likelihood
ratio. (40%]

b) In an M-ary digital transmission system the source signal can take one of M
possible levels during a symbol period. In each symbol period the detector makes N
measurements ¥ = [y;y2...yn]? of the channel output.

1) Show that the Maximum A-Posteriori (MAP) decision rule for the detector may

be expressed as: [30%]

Choose H; if max{p(y|H;) P(H;)} = p(y|H;) P(H,).
J
ii) Show that the average error probability P, for the detector is given by: [30%]

M
Pe=1- Z P(D;|H;) P(H;)

i=1
where:
p(y|H;) is the probability density of the observation vector y conditional on hypothesis
H; being in force;
P(H;) is the a-priori probability of hypothesis H;;
P(D;|H;) is the probability of deciding in favour of hypothesis H; when H; is in force.

4 a) Describe, in detail, the Neyman-Pearson decision rule applied to detection theory
and discuss the advantages and disadvantages of this decision rule over the MAP and
Bayes criteria. [30%]

b) Define the Receiver Operating Characteristic of a detector and describe its role
in both detection theory and data classification. [30%)]

c) Show that the value of the threshold for the Neyman-Pearson test for a single
observation is given by the slope of the receiver operating characteristic (ROC) at the
required false alarm probability. [40%]
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