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1 A generative classifier is to be built for a two-class problem. The observation

vectors for this task are d-dimensional. The class conditional distributions for the two

classes are Gaussian. The parameters for class ; are p; and X and those for class @,

are [15 and X. The priors for the two classes are P(w;) and P(w;).

(a)

State Bayes’ decision rule for this task. Under what conditions will this form

of generative classifier yield a classifier with the minimum probability of error? [15%]

(b)

The covariance matrices for the two classes are constrained to be the same

and diagonal, £; = X, = Z, and the priors for the two classes are equal.

(c)

(i) The model parameters are trained on # training observations, X, ..., Xz,
with class labels yq,...,yn. If observation x; belongs to class @; then y; =1,
and if it belongs to class @, then y; = 0. The log-likelihood of the training
data can be expressed as

Lyt D) = 3 (1o N (31, 2)) + (1 — 3 log( A (xis i 5))
i=1

What is the maximum-likelihood estimate of the covariance matrix x? [20%]

(i) Show that the posterior probability for class w; given an observation x
can be expressed in the form

1
Planfx) = 1+exp(—wo(x) +a)

where ¢(x) is a function of x that yields a d-dimensional vector. Find
expressions for w, ¢(x) and a. [25%]

The means of the two class-conditional distributions are now constrained to

be zero, 1 = Uy = 0. The covariance matrices for the two classes are allowed to be

different, but constrained to be diagonal. Again the priors for the two classes are equal.

Show that the posterior probability for class w; can be expressed in the same form as in

part (b)(ii) and find expressions for w, ¢(x) and a in this case. [25%]

(d)

Compare the decision boundaries that result from the two forms of classifier

in parts (b) and (c). [15%]



2 An M-component Gaussian mixture model with diagonal covariance matrices is
to be used as the probability distribution for a d-dimensional feature vector. There are
N independent training examples, Xi,...,Xy, to estimate the model parameters. The
parameters of the model are to be estimated using Maximum Likelihood (ML) estimation.

(a) Find an expression for the log-likelihood of the training data in terms of the
component priors, ci,...,Cpy, and component parameters. [10%]

(b) Expectation-Maximisation (EM) is to be used to find the Gaussian component
means. The auxiliary function for this problem can be expressed as

N M
0(6,0) =3, 3, P(wm|x;,0)log(p(x;|wm,0))
i=lm=1
where 0 is the set of all the model parameters and constant terms have been ignored.

(i)  Describe how EM is used to estimate the model parameters and the part
played by the auxiliary function. Why is EM often used for mixture models?  [15%]

(i) Show that the update formula for the mean of component @y, is [30%]

SN P(0mlx;, 0)x;
" Eévzlp(wmkiae)

A

(c) A sequential form of update is to be used to estimate the means. The update

(n)

formula for the estimate of the mean after n training examples, f1;,”, can be expressed as
A ~(n—1 ~{(n—1
a5 =iV 40 (xa— 25V

(i) Initially, the set of model parameters, 6, used to compute P(wy|x;, )
is not sequentially updated. Derive an expression for n,(nn so that after all ¥
training examples have been seen the estimate in part (b)(ii) is obtained. [30%]

(n)

(i) The following approximate form for N’ is proposed

n(n) _ P(wm[xs,0)

=
nCm

Why is this form more suitable when 6 is sequentially updated? [15%]

(TURN OVER



4

3 Regression is to be performed using a Gaussian process. There are N d-dimensional
training observations, X = [x1,...,Xy], with associated output values y = [y1,...,yn]".
The outputs are related to the observations by y; = f(x;) + € where € ~ A4(0, c2). The
regression function, f(x), is jointly Gaussian distributed with the training outputs. The
mean function is set to 0. The covariance function between vectors x; and x; is k(x;, X;).
An additional term is added to this covariance function for the prediction noise €.

(a) What is the advantage of using Gaussian process regression over basis

function regression? [10%]

(b) By finding an expression for the joint distribution of f(x) and the training data
output values y, show that the mean, p, and variance, 62, of the distribution of the output

for observation x have the form

p o= dEly
02 = c—dEld+o?
Find expressions for the scalar ¢, vector d and matrix E. [30%]

(c) Find an expression for the marginal likelihood of the training data, p(y|X). [15%]

(d) The following form of covariance function is to be used

1 d v, )2
Kxix)) = oxp [ L 37 im = im)”

2
2 m=1 Om

where x;,, is element m of vector x;. The hyper-parameters of the covariance function,
0'12, cees 0'(%, are to be estimated from the training data.

(i)  Briefly discuss how the hyper-parameters can be estimated. [10%]

(ii) Show that as 62 — oo the m’th dimension of the observation vector x
does not influence the distribution of the output. [20%]

(iii) Compare Gaussian process regression with this form of covariance
function and relevance vector machine regression. [15%]

(cont.



The following equality for vectors may be useful for this question. If a and b are

BE(REE)

alb ~ A (tha + ZapZpy (b~ tp), Zaa = Zap Sy Zpa)

jointly Gaussian,

then

(TURN OVER



4 A Parzen window is to be used to estimate the class-conditional density for a pattern
classification task. The form of the Parzen window density estimate j(x) for the the 1-

dimensional vector x is given by
N 1 ¢ 1 X—X;
P(X)—;ig,lﬁ‘}j( p )

where the training data consists of training samples x; to x. The true distribution, from
which the training samples are drawn, is Gaussian distributed with mean W and variance
2. The form of the window function is also Gaussian.

(a)  Show that if the window function ¢ (x) is a valid probability density function,
then the Parzen window estimate p(x) will also be a valid probability density function.

(b) Show that the expected value of the Parzen window density estimate is
E{PW)} =N (mp, 0% +17)
Comment on the implication of this result. Note the following equality may be useful:

/ N (x5, GIZ)J/(v;u,O'ZZ)dv = J/(x;u,alz +0'22)

(c)  An approximate form for the true Parzen window density estimate is required.

(i) By using a first-order Taylor series expansion around ¢ (0), show that
the Parzen window estimate p(x) may be approximated as

p(x) = by + b1x+b2x2
where bg, b1 and b, are functions of the training data. What are the values of

bo, bl and bz?

(i) Discuss how the use of this approximation affects the memory
requirements and computational speed. = What affects how well this
approximates the exact Parzen window density estimate?

(iii) What is the expected value of this approximation? Contrast this
expected value with the form given in part (b).

[15%]

[30%]

[25%]

[15%]

[15%]



5 A classifier is required for a two-class problem. There are a total of m training
samples X{ to Xp, with associated labels y; to y, where y; € {—1,1}.

(a) Initially a linear classifier is to be constructed. Contrast the training criteria
used to train a Support Vector Machine (SVM) classifier and the perceptron algorithm
classifier when the training data is linearly separable. How is the training criterion for the
SVM altered for the case when the training data is not separable?

(b) Discuss how the use of kernel functions may be used to improve the
performance of an SVM classifier. What is the general form for an inhomogeneous
polynomial kernel-function?

(¢) The training samples are 1-dimensional. The following mapping is proposed
from the 1-dimensional input-space to the (N + 1)-dimensional feature-space:
!
D(x) = [ 1 exp(x) exp(2x) ... exp(Nx)

where x is the point in the input-space.

(i) Compare this form of feature-space with the feature-space associated
with an inhomogeneous polynomial kernel.

(i) Show that the kernel-function, the dot-product of two vectors in the
feature-space, between two points x; and x; for this mapping may be
expressed in the following form
b—exp(a(x;+x;
b —exp(x; +x;)

What are the values of a and b?

(d) Express the SVM classification rule using the kernel-function in its dual
form which is a function of the support vectors. How does the computational cost of
classification vary as the number of support vectors, S, the number of training samples,
m, and N change?

END OF PAPER

[25%]

[15%]

[20%]

[25%]

[15%]



