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COMPLEX ANALYSIS AND OPTIMIZATION
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SECTION A

1 (a) Identify the isolated singularities of the following complex functions, and

calculate the residue at each one.

i f2) =1/ ~2) [25%]
() f(z) =1/sin(1/z) [25%]

(b) Using contour integration, evaluate the following integral,

2n
/O cos®x -+ sin? x dx [50%]



2 (a) State Jordan’s Lemma. [10%)]

(b) Evaluate, using contour integration,

® cosmx
) 2dx,
0 x*+a

where a > 0. 190%]

(TURN OVER



SECTION B

3 A nuclear engineer has been asked to design a flask to contain a certain volume V
of some highly radioactive nuclear waste. In order to shield workers adequately, the walls
of the flask must be of a certain thickness ¢. The engineer has decided to make the flask
cylindrical. The interior cavity in which the waste will be stored will be of internal radius
R and height H, as indicated schematically in Fig. 1.

Side view Plan view

Fig. 1

In order to provide effective shielding, the material from which the flask will be
made is very dense. The engineer therefore decides to minimize the volume of material
used in the construction of the flask. As ¢ is defined, the design variables are R and H.

(a) Formulate this task as a constrained optimization problem with one equality

constraint.

(b) By using the equality constraint to eliminate / from your expression for the
objective function, show that the task can be formulated as an unconstrained univariate

minimization problem with an objective function
2 A%
J(R)=2n(R+1t)t+V [(1 + E) - 1}

(c) Estimate, using a Golden Section line search, the value of R that minimizes
[ for the case where V = 1000 cm? and t = 10 cm. A suitable initial interval for R is

{(cont.

[10%]

[10%]



between S and 10 cm, and the search can be halted when the interval has been reduced

four times. {40%]
(d) By using appropriate optimality criteria find an analytical expression in terms

of V and ¢ for the value of R that minimizes f. Hence find the optimal flask design for the

case detailed in (c), and comment on the performance of the Golden Section line search.

How does the optimal flask design for a given value of V change with the wall thickness

t? [40%]

(TURN OVER



4 An engineer has been asked to redesign a parallel flow shell-and-tube heat
exchanger to improve its heat transfer performance. A schematic end view of the heat

exchanger is shown in Fig. 2.

Quter shell

Individual tubes

The smallest available conducting tube has a radius of 0.5 cm and all the tubes used
must be of the same size. To ensure there is adequate space inside the outer shell, the total
cross-sectional area occupied by the tubes must not exceed 100 cm?. The heat transfer
performance of the heat exchanger depends directly on the total surface area of the tubes.
The tubes are of fixed length /.

(a) Formulate the task of optimizing the design of the heat exchanger as a

constrained minimization problem in standard form.

(b) Treating the number of tubes N as a continuous variable, identify the feasible
region graphically. By superimposing contours of the objective function, identify which
of the constraints are active at the optimum, and hence find the optimal solution to this

design problem.

(¢) Confirm your results to (b) by solving the same minimization problem using

the Kuhn-Tucker multiplier method.

(d) Briefly discuss the merits of trying to change the limiting values of the

constraints.

END OF PAPER

[10%]|

[30%]

[50%]

[10%]



1. Taylor Series Expansion

For one variable:

4M13
OPTIMIZATION
DATA SHEET

) = FOY+ =) F ) + 2 (x=x)F1) +R

For several variables:

Fx) = FEY+ VDT (=X + %(x ' H(X") (x -x*) + R

where

gradient V f(x) =

K3
axl

of

axn

and hessian H(x) = V(Vf(x)) =

H( x*) is a symmetric #X s matrix and R includes all higher order terms.

2. Golden Section Method

A

i oy
ax12 axl axn
o f o f

axn axl axf

f(x) (a) Evaluate f(x) at points A, B, C and D.
Ax _ d—-Ax
d-Ax d (b) If f(B) < f(C),new intervalis A—-C.
ij — 0382 If f(B) > f(C),new interval is B —D.
If f(B) = f(C), new interval is either
d=11§ A-CorB-D.

I Y (c) Evaluate f(x) at new interior point. If

not converged, go to (b).

Ax Ax
A B C D

4M13

20/10/02



3. Newton’s Method
(a) Select starting point X,
(b) Determine search direction d, = —H(x k)_1 Vf(x,)
(c) Determine new estimate x, ., = X, +d,

(d) Test for convergence. If not converged, go to step (b)

4. Steepest Descent Method
(a) Select starting point X,

(b) Determine search direction d, = -Vf(x,)

a’d
(c) Perform line search to determine step size o, or evaluate o, = —Tk—k
. . d, H(x,)d,
(d) Determine new estimate x, ., = x, + o, d,
(e) Test for convergence. If not converged, go to step (b)
5. Conjugate Gradient Method
d)d,

(a) Select starting point x, and compute d, = -Vf(x,) and o, = ————

(b) Determine new estimate x, , = x, + o, d,

Vix )] ]2
(c) Evaluate Vf(x, ,)and 8, = ’—’f_
k+1 k ‘Vf(xk)‘
(d) Determine search direction dk 1 = -V f(xk +1) + ﬁkdk
T
ALY

() Determine step size o, ., = _dT ” .
ket H(Xp ) dy

(f) Test for convergence. If not converged, go to step (b)

6. Gauss-Newton Method (for Nonlinear Least Squares)

If the minimum squared error of residuals r(x) is sought:

Minimise f(x) = i r’x) = r(x) r(x)

i=1
() Select starting point x,,

(b) Determine search direction d, = —[ J(x,)(x,) 17" J(x)Tr(x,)
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dar,
Vrl(x)T dx, " dx,
where J(x) = : =]
Vrm(x)T arm or.
\_a—-XI see ax

(c) Determine new estimate X, | = X, +d,

(d) Test for convergence. If not converged, go to step (b)

7. Lagrange Multipliers
To minimise f(x) subject to m equality constraints ,(x) = 0, i = 1, ..., m, solve the sys-

tem of simultaneous equations

VA(X") + [VR(x) 17X =0 (n equations)
h(x*) =0 (m equations)

where A = [/11, ey Am] T is the vector of Lagrange multipliers and
oh, oh,
dx, T ox

*, 4T .
(VR 1" = | Va() ... VA" | = )
oh, oh
ox T ox
L 7 n
8. Kuhn-Tucker Multipliers
To minimise f(x) subject to m equality constraints 4, (x) = 0,7 = 1, ..., m and p inequal-

ity constraints g(x) < 0,7 = 1, ..., p, solve the system of simultaneous equations

VAX) + [VR(X) 174 + [Ve(x*) 17w =0 (n equations)
h(x*) =0 (m equations)
Vi=1,..p, ug(x)=0 (pequations)

where A are Lagrange multipliers and p 2 0 are the Kuhn-Tucker multipliers.

4M13 3 20/10/02



9. Penalty & Barrier Functions

To minimise f(x) subject to p inequality constraints g(x) < 0,i = 1, ..., p, define
9(x,p,) = f(X) + p, P(X)

where P(x) is a penalty function, e.g.

p
P(x) = Y (max[0, g(x)])?

i=1

or alternatively

ﬂ&m)=ﬂm—é3@)

where B(x) is a barrier function, e.g.

p

1
B(x) = Zm

i=1
Then for successive £k = 1,2, ... and p, such that p, >0 and p, , > p,, solve the prob-

lem

minimise g(X, p, )
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