ENGINEERING TRIPOS PART IIB

Wednesday 5 May 2010 2.30to 4

Module 4C6

ADVANCED LINEAR VIBRATION
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachment:
4C6 Advanced Linear Vibration data sheet (10 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator

JWO05



1 A pressure vessel in a nuclear power plant is the subject of vibration modal
analysis. An accelerometer is fixed to the wall of the vessel and an impulse is applied
to two grid points in turn. Transfer functions are derived from the impulse response
data and these are shown in Fig. 1 both as magnitude plots and as modal circles. For
each measurement the data logger collects 8192 data points per channel at a sampling
rate of 320 Hz. Three modes are identified at frequencies 25, 55 and 65 Hz.

(a) On a sketch, identify the frequency corresponding to each of the five visible
modal circles. [10%]

(b) For each mode n, using the notation of the Data Sheet:
(i)  estimate the quality factor Q,; [25%]
(ii) estimate the modal amplitude factor u,(x)u,(y) for each grid point. [20%]
(¢) Use sketches to illustrate how the modal circles might appear if:
(i)  the modal frequencies were 25, 64.5 and 65 Hz; [10%)]
(i) the sampling rate was increased to 3200 Hz. [10%)]

(d) Comment on the signal-to-noise ratio revealed in these measurements.
What factors might influence this? What steps might be taken to improve the ratio? ~ [25%]
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2 (a) Briefly describe three different applications of the interlacing theorem. [25%]

(b) An H-shaped antenna and its mounting are represented schematically in
Fig. 2. The four elements AC, AD, BE, BF are identical flexible beams. The member
AB is arigid link which clamps the flexible elements at their attachment points A and B.
The antenna can vibrate laterally in the plane of the diagram so that the flexible
elements execute small-amplitude bending motion. The supporting structure allows the
link AB to move laterally, restrained by a spring.

(i) Explain how considerations of symmetry can be applied to the
vibration modes of the antenna. Describe the vibration modes qualitatively

and illustrate with appropriate sketches. [25%]

(ii) For the case in which the restraining spring is infinitely stiff, describe

the distribution of natural frequencies. [15%]

(ili) The restraining spring is now reduced to a finite stiffness. What does
the interlacing theorem say about which of the natural frequencies are
unchanged and which may change? Explain the result physically in terms of
the mode descriptions from part (i). [35%]

Fig.2
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3 For each of the following systems, describe the physical mechanisms which are
likely to contribute significantly to vibrational energy dissipation. In each case explain
how (if at all) the design and/or fabrication detailing could be changed (i) to introduce
extra dissipation, and (ii) to reduce dissipation.

(a) A Meccano model of a structure (in other words, a model made of bolted

metal components). [35%]

(b) A resonant MEMS device (a micro-scale mechanical oscillator made using
silicon-chip fabrication methods, such as an air-bag accelerometer for a vehicle). [35%]

(¢) The bounce and pitch modes of a railway carriage. [30%]

4  (a) A stretched rectangular membrane with dimensions axb, tension I' and

mass per unit area m is clamped on all sides. The out-of-plane displacement during
small-amplitude vibration of the membrane is w(x,y,#). Use the method of separation of

variables to show that the mode shapes take the form w =sinkyxsink,y with particular
values of kj, k, which should be found. Hence find the natural frequencies of the

membrane. [45%]

(b) Draw a sketch of the (kj,kp) plane showing the distribution of the modes

and add to this sketch lines showing contours of equal natural frequency. [20%]

(¢) For a frequency @ which corresponds to modes which are high up in the
modal series for the membrane, use the sketch from part (b) to show that the

approximate number of natural frequencies below @ can be expressed in terms of an
integral over a region of the (k,k;) plane. Deduce a formula for the modal density of

the membrane (the approximate number of natural frequencies in a unit frequency
interval), and show that this depends only on the area of the membrane and not on the

aspect ratio a:b. [35%]

END OF PAPER
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Part IIB Data sheet
Module 4C6 Advanced linear vibration

VIBRATION MODES AND RESPONSE

Discrete systems

1. The forced vibration of an N-degree-of-
freedom system with mass matrix M and

stiffness matrix K (both symmetric and
positive definite) is

My+Ky=f
where y is the vector of generalised

displacements and fis the vector of
generalised forces.

2. Kinetic energy

| (PR
T=—y'M
5 My

Potential energy

1
V==—yK
K2Ry
3. The natural frequencies w,, and
corresponding mode shape vectors u

satisfy

(n)

Kg(”) = CUnZMLt(n) .

4. Orthogonality and normalisation

. 0, j=k
GY pp 0 2 17
w Mu I, j=k

WY ) ={ 0’2 J=k

w,, j=k
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Continuous systems

The forced vibration of a continuous system

is determined by solving a partial differential
equation: see p. 4 for examples.

=-;—fét2dm

where the integral is with respect to mass
(similar to moments and products of inertia).

See p. 4 for examples.

The natural frequencies w, and mode
shapes 4, (x) are found by solving the

appropriate differential equation (see p. 6)
and boundary conditions, assuming
harmonic time dependence.

0, j=k
fuj(x)uk(x)dm= L j=tk
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5. General response

The general response of the system can be
written as a sum of modal responses

N
y(ty= Zq;(t)ul? =Uq(0)
j=t

where U is a matrix whose N columns are

the normalised eigenvectors L{(j ) and gj can

be thought of as the “quantity” of the jth
mode.

6. Modal coordinates g satisfy
G+ [diag(wjz-)] 9=0
where y =Ug and the modal force vector
Q-U'f .

7. Frequency response function

For input generalised force f; at frequency

o and measured generalised displacement
yi the transfer function is

Ny, (1), (1)
u .
H(j,k,a)) Yk _ E_L_Zuk_z
J n=1 wn -
(with no damping), or
N OMME

H(j ko) =2k~ 3 — X

fj n=1wn2 +2iwm,, — w?

(with small damping) where the damping
factor £, is as in the Mechanics Data Book

for one-degree-of-freedom systems.
8. Pattern of antiresonances

For a system with well-separated resonances
(low modal overlap), if the factor uj(")uk(")
has the same sign for two adjacent
resonances then the transfer function will
have an antiresonance between the two
peaks. If it has opposite sign, there will be
no antiresonance.
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The general response of the system can be
written as a sum of modal responses

w(xt) = ¥ q;(t) u(x)
J
where w(x,?) is the displacement and ¢ can

be thought of as the “quantity” of the jth
mode.

Each modal amplitude g;(¢) satisfies
. 2
qj+wjq;=9;

where Q; = [ f(x,t) u;(x) dm and f(x,) is
the external applied force distribution.

For force F at frequency w applied at point
x, and displacement w measured at point y,
the transfer function is

W Uy (X) U, ()
H(x,y,0)=—= Y 1=
F ; a)n2 -w

(with no damping), or

-3

n
(with small damping) where the damping
factor &, is as in the Mechanics Data Book
for one-degree-of-freedom systems.

Uy (%) Uy )

2 .
0, +2iow,C, -

H(x’yaw)= 2

F

For a system with low modal overlap, if the
factor u,(x)u,(y) has the same sign for two
adjacent resonances then the transfer
function will have an antiresonance between
the two peaks. If it has opposite sign, there
will be no antiresonance.
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9. Impulse response

For a unit impulsive generalised force For a unit impulse applied at ¢ = 0 at point x,
fj =06(z) the measured response yy is given the response at point y is

b
’ glx, 1) = E———*M"(x) ty (7) sinw,t
N ) n n
,k, t )= t
g(] =Yilt) 2 sinwy for ¢ =0 (with no damping), or
for ¢ = 0 (with no damping), or g(x, 1)~ E 1n(X) 1 (Y) sin w,t ¢ @nbat
) n n
u
glikt)= > ~L—F sinw,t e~ “ntnt for ¢=0 (with small damping).
for t = 0 (with small damping).
10. Step response
For a unit step generalised force For a unit step force applied at ¢ = 0 at point
0 <0 . x, the response at point y is
TV ts0 the measured response yy is u () ()
= = N 2n 2 )y
given by h(x,y,t) = E ’% [1-cosw,]
n

Xy for £ 0 (with no dampi
h(j,k t =y () = 2 1 coswnt] or t =0 (with no damping), or

n=1 h(t)zE“”(x) ;‘n(}’) [l—cosw,,ze“”nz-?n’]
for ¢ =0 (with no damping), or n Wp

n), (n) for ¢ =0 (with small damping).

N .
h(jk,1) = EEL—}—— [l —cosw,,t e“wngnt]
n=1 w

for ¢ = 0 (with small damping).

Rayleigh’s principle for small vibrations

v_yKy

T y ‘M y
generalised coordinates, M is the mass matrix and K is the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on p. 6.

The “Rayleigh quotient” for a discrete system is % where y is the vector of

If this quantity is evaluated with any vectory, the result will be

(1) = the smallest squared frequency;

(2) < the largest squared frequency;

(3) a good approximation to w,% if y is an approximation to g(k).

(Formally, Y is stationary near each mode.)
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS

Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x, ), applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy

2 2 2 2
0w aw 1 ow 1 ow
ma— - PZ = f(xt Ve—°Pfl ==| dx ==—mf] —| dx
o x> Fx 2 f( é‘x) sz( &r)

Torsional vibration of a circular shaft

Shear modulus G, density p, external radius g, internal radius b if shaft is hollow, angular
displacement 6(x,r), applied torque f(x,¢) per unit length.

Polar moment of area is J = (n/2)(a4 - b4).

Equation of motion Potential energy Kinetic energy
2 2 2 2
a°0 a0 1 a0 1 a0
J —5 — GJ—5 = f(xt V==GJ[| —| dx T==pJ[|—| dx
Pl =Gl z =lxn 2 f(é’x) 2P f(ar)

Axial vibration of a rod or column

Young’s modulus E, density p, cross-sectional area A, axial displacement w(x,¢), applied
axial force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2 2 2
9w a°w 1 aw 1 aw
A—s - FA—= = f(x,t =—FA[|—| dx =—pA[|—1] dx
P ot ox Jx 1) 2 f((?x) 2'0 f(ﬁt)

Bending vibration of an Euler beam

Young’s modulus E, density p, cross-sectional area A, second moment of area of cross-
section I, transverse displacement w(x,?), applied transverse force f(x,¢) per unit length.

Equation of motion Potential energy Kinetic energy

2 4 2. \? 2

a“w 0w 1 I“w 1 ow
A—=— + EI— = f(x,t V=—=EI||—=]| dx =—pA (——) dx
PATGE B =D 2 f(o"xz) el

Note that values of I can be found in the Mechaqics Data Book.
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VIBRATION MEASUREMENT

Some useful OpAmp circuits for instrumentation

(Note: j is used instead of i here for V-1 for compatibility with the Electrical Data Book.)

R
e
R — Inverting voltage amplifier
v, i
Vs R
Vo = L Vi
R;
B
1 Inverting voltage amplifier with low-pass and
11 high-pass filter
C; il

Ry Vi

Vo =

R; (1+ jwl%,-Ci )1+ joR £C )

C
H Inverting charge amplifier
Q
Vo
y - £
H =
C
R
| M|
“ Inverting charge amplifier with high-pass filter
0 C
Vo
0 1
V,=-<
I Ci+ 1
— JoRC
C R
|| |
0 I ——
| R, - Inverting charge amplifier with additional gain
Vo
QR +Ry
e 0 C Ry
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Some devices for vibration excitation and measurement

Moving coi
electro-
magnetic
shaker

LDS V101: Peak sine force
10N, internal armature
resonance 12kHz

Frequency range 5 — 12kHz,
armature suspension
stiffness 3.5N/mm,
armature mass 6.5g, strok
2.5mm, shaker body mas
0.9kg

Piezo stack
actuator

LDS V650: Peak sine forc(
1kN, internal armaturg
resonance 4kHz

Frequency range 5 — 5kHz
armature suspension
stiffness 16kN/m,
armature mass 2.2kg,
stroke 25mm, shaker
body mass 200kg

LDS V994: Peak

sine force 300kN
internal armature
resonance 1.4kHz

Frequency range 5 —
1.7kHz, armature
suspension stiffng
72kN/m, armaturg
mass 250kg, strok
50mm, shaker bo
mass 13000kg

FACE PAC-122C
Size 2x2x3mm

Mass 0.1g
Peak force 12N
Stroke 1um

Unloaded resonance 400kH

Impulse
hammer

IH101
Head mass 0.1kg
hammer tip stiffness
1500kN/m

Force transducer sensitivit)

4pC/IN

Internal resonance 50kHz

4C6 data sheet
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Piezo
accelero-
meter

B&K4374 Mass 0.65g
sensitivity 1.5pCl/g, 1-
26kHz, full-scale rang
+/-5000g

DJB A/23 Mass 5g,
sensitivity 10pC/g, 1-
20kHz, full-scale rang
+/-2000g

B&K4370 Mass 10g
sensitivity 100pCi/g, 1
4.8kHz, , full-scale
range +/-2000g

MEMS
accelero-
meter

Laser
Doppler
Vibrometer

ADKL202E
265mV/g

Full scale range +/- 2g
DC-6kHz

Polytec PSV-400 Scanning
Vibrometer

Velocity ranges
2/10/50/100/1000
[mm/s/V]

4C6 data sheet
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Correspondence principle

VIBRATION DAMPING

For linear viscoelastic materials, if an undamped problem can be solved then the
corresponding solution to the damped problem is obtained by replacing the elastic moduli
with complex values (which may depend on frequency): for example Young’s modulus
E — E(1+in). Typical values of E and n for engineering materials are shown below:

1047

-y
[

foams

103

Loss coefficient, n, at 30°C
=

ddd b biad P

104

Naoprane
Butyl rubber N
lsoprene | \elasto

1; Fiexible polymer

« Elastomers :, | Loss

Silico

Foams

ne
mers

/

P

coefficient - Modulus '

Polymers

lonomers
[, PTFE

[ PMMA P/ET" <
Non-technical

ceramics  Stre

Composites*

Zing alioys

Al alloys
Cu alloys

Technical
ceramics

Soda glass
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Free and constrained layers
For a 2-layer beam: if layer j has Young’s modulus E;, second moment of area [; and
thickness £, the effective bending rigidity ET is given by:

Bl = B L |1+ eh® + 31+ 1) =2
1+eh
where
E
e
E, hy

For a 3-layer beam, using the same notation, the effective bending rigidity is

3 3 3 2
h h, h hy |hy—d 2
El-EL+E 2 .E 3 _FE 2|31 + Ehd? + Ehy(hy— d

1Ty T2 T, 212[1+g ihd” + Byhy (I~ d)

E'zf'z‘(hzl —d)+ E3ha(hs ;- d)] [

Eyhy(hyy = hy 1 12) + g(Eylyhy y + Eshahy )
Elhl + Ezl'h /2+ g(Elhl + Ezhxz + E3h3)

hyi—d
+E3h3(h31—d)2‘[ iig ]

where d =

b

By +hy by + b G
M= 1:z T 12 *+hy, g=ﬂ7§7’
3737

G, is the shear modulus of the middle layer,andp =2/ (wavelength ), i.e. “wavenumber”.

Viscous damping, the dissipation function and the first-order method

For a discrete system with viscous damping, then Rayleigh’s dissipation function

F = % y e y is equal to half the rate of energy dissipation, where y is the vector of

generalised velocities (as on p.1), and C is the (symmetric) dissipation matrix.

If the system has mass matrix M and stiffness matrix K, free motion is governed by
My+Cy+Ky =0,

Modal solutions can be found by introducing the vector z = [X] If z= ue™ then u, A are the

Y

eigenvectors and eigenvalues of the matrix

0 I
A= -1
Mk -m7ic|

where 0 is the zero matrix and [ is the unit matrix.
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THE HELMHOLTZ RESONATOR

A Helmbholtz resonator of volume V with a neck of effective length L and cross-sectional area
S has a resonant frequency

S
w=01’—
VL

where c is the speed of sound in air.
The end correction for an unflanged circular neck of radius a is 0.6a.

The end correction for a flanged circular neck of radius a is 0.8a.

VIBRATION OF A MEMBRANE

If a uniform plane membrane with tension 7 and mass per unit area m undergoes small
transverse free vibration with displacement w, the motion is governed by the differential

0’?2w N o"2w —m (92w
oy >

in terms of Cartesian coordinates x, y or

equation

Pw law 15w  &w
a* rar r?ge o
in terms of plane polar coordinates r,0.

For a circular membrane of radius a the mode shapes are given by
sin

}n@ J, (kr), n=01273---
cos

where J, is the Bessel function of order n and k is determined by the condition that
J, (ka)=0. The first few zeros of J,,’s are as follows:

n=0|n=1 |n=2|n=3
ka=|2.404|3.832 | 5.135| 6.379
ka= |5.520]| 7.016 | 8.417] 9.760
ka = | 8.654| 10.173

For a given k the corresponding natural frequency w satisfies

k= fm[T.
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