ENGINEERING TRIPOS PART IIB

Wednesday 21 April 2010 2.30to 4

Module 4F1
CONTROL SYSTEM DESIGN

Answer not more than two questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachment: Formulae sheet (3 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed
Supplementary pages: Three extra copies
of Fig. 2 (Question 2).

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 A position control system is to be designed for a tracking antenna in the arrangement
of Fig. 1 where r(¢) is the reference input and y(¢) is the pointing angle. The open-
loop transfer-function of the antenna from actuator input to pointing angle in arcmin is

approximated as:

Gls) = s(s+1)

(a) Consider the following specifications:

A: Steady-state error of at most 0.1 arcmin for #(¢) equal to a ramp of

10 arcmins™!;

B: Phase margin of at least 45°.
Design a simple controller K(s) with one pole and one zero to meet these specifications

and to achieve an actual phase margin of between 50° and 55°. Give a rough sketch of
the Bode diagram of the resulting return ratio to illustrate the approach.

(b) It is desired that the sensitivity of the control system is significantly reduced
over as wide a frequency range as possible. Plant uncertainty at high frequency is also a
concern. The following specifications are therefore investigated, where S(s) denotes the

sensitivity function:
C:|S(jw)| <0.1for0 < o < wy;
D: |S(jw)| < /2 for all w;
E: |G(jo)K(jo)| < 100/0? for @ > 100 rad s~ 1.

Find an upper bound on the achievable ). State clearly but do not prove any results you

use. [Hint: you may use the approximation: In(1 + x) =~ x for x small.]

(c) Discuss how the compensator K(s) of part (a) could be modified to achieve
specifications A, B and E. It is no longer required that K(s) has one pole and zero. It is
not necessary to calculate the final compensator, but sufficient explanation is needed for

your approach to be clear.
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2 Fig. 2 is the Bode diagram of a system G(s) for which a feedback compensator K(s)
in the standard negative feedback configuration is to be designed. It is known that G(s)

has exactly one pole in the right half-plane.

(a) (i) Sketch on a copy of Fig. 2 the expected phase of G(jw) if G(s) were

stable and minimum phase.

(ii) What does this plot suggest about possible zeros of G(s) satisfying
Re(s) > 0?7

(b) A double lead compensator with transfer function

os + @ 2
S+ w0

K(s):k(

where o > 1 is selected.

(i) Letk=1, @, =1, a=+/10. Sketch the Bode diagram of K(s) and the
resulting return ratio on a copy of Fig. 2.

(ii) Sketch the Nyquist diagram of the return ratio and hence explain why
the closed-loop system can never be stable with this @., o and any £.

(¢) (1) Explain using the root-locus method why the closed-loop system can

never be stable with a compensator K(s) which has all its poles in the left
half-plane.
(ii) The closed-loop system can be made stable with K(s) equal to a
constant times a p-type all-pass function. Select suitable parameters for such
a K(s) and sketch the Bode diagram of K (s) and the resulting return ratio on a
copy of Fig. 2. Justify that the closed-loop system is stable using the Nyquist
stability criterion.

Three copies of Fig. 2 are provided on separate sheets. These should be handed in with

your answers.
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3

(a)

State but do not prove the conditions which must be satisfied by the transfer-

function from reference input to plant output in any two-degree-of-freedom control

system design.

(b)

I3

Consider a plant with transfer-function:
m
H (1+ ogs)
Gls) ==L (1)
(1+fis)

1

where f3; > 0 for all i and m < n.

mcs02

(c)

(i) Letm =n—1 and suppose that ¢; 5 0 for all i. Find an expression for
the initial slope of the step response of the plant. Hence show that there is
initial undershoot in the step response if and only if an odd number of the ¢;

are negative.

(ii) Suppose that oy < 0 for some k. By considering the definition of the
Laplace transform of the step response y(¢), or otherwise, show that

/0 (1) i = 0.
(iii) Deduce that, if one or more of the «; is negative, then there will always

be at least one 7 > 0 where y(f]) = 0.

Let )
~ (I—9)
G) = Ty

(i) Find the initial slope, and first derivative of the initial slope, of the step

response.

(ii) Without attempting to calculate it, provide an approximate sketch of the
step response of G(s) which indicates the main features that may be expected.

(iii) If a two-degree-of-freedom control system is designed for this plant,
what features of the step response are unavoidable, assuming that the unity
DC gain of the response is retained?
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Formulae sheet for Module 4F1: Control System Design

1o be available during the examination.

1 Terms

For the standard feedback system shown below, the Return-Ratio Transfer

Function L(s) is given by
L(s) = G(s)K(s),

the Sensitivity Function S(s) is given by
1
S(s) = —r——
14+ G(s)K(s)
and the Complementary Sensitivity Function T (s) is given by

G(s)K (s)
) =TT GoEm
+ G(s)K(s)

w(s)
* G(s) — l y(s)

K (s) O u(s)

The closed-loop system is called Internally Stable if each of the four closed-loop
transfer functions
1 G(s)K(s) K(s) G(s)
1+ G()K(s) 1+GEK(E) 1+GE)K(EG) 14 GE)K(s)

are stable (which is equivalent to S(s) being stable and there being no right half

plane pole/zero cancellations between G (s) and K (s)).
A transfer function is called real-rational if it can be written as the ratio of two

polynomials in s, the coefficients of each of which are purely real.

2 Phase-lead compensators

The phase-lead compensator

s+ wc /o

, a>1
S + weo

K(s)=«

achieves its maximum phase advance at w = w,, and satisfies:

IK(jwe)l =1, and [LK(jw:) = 2arctana — 90°.



3 The Bode Gain/Phase Relationship
If
1. L(s) 1s areal-rational function of s,
2. L(s) has no poles or zeros in the open RHP (Re(s) > 0) and

3. satisfies the normalization condition L{0) > 0.

then
. 1 [*d e ]
LL(jap) = — — log|L(jwge"){logcoth — dv
T ) oo dv 2
Note that
+
logcothM:loglw @0 , where w = wpe’.
2 w — Wy

3
2_
§’§’
+ 1
3l3
o)
=
1_ .
0—2 ‘ = o ¥ 2
10 10 10 10 10
w/wp
Figure 1:

If the slope of L(jw) is approximately constant for a sufficiently wide range of
frequencies around w = wy we get the approximate form of the Bode Gain/Phase
Relationship

: m dlog|L(jwoe’])
LL(jwo) ~ ) v
. o




4 The Poisson Integral

If H(s) is areal-rational function of s which has no poles or zeros in Re(s) > 0
then if so = 09 + jwy with ag > 0

1 [ o)) .
logH(so)::—/ 5 2logH(]a))da)
T J-o0 00 + (CL) - (")O)

log | H (so)| 1/00 coshvcosé 1 IH(.I |“)!d
50)| = — 0 sole”)| dv
BITHON =5 —~o0 sinh? v + cos? 6 S

and

where v = log ('—;‘;—|> and @ = /(so). Note that, if s is real, so Zsg = 0, then

coshvcos@ 1

sinh? v 4-cos2@®  coshv

We define
coshvcosd

Py(v) =
b sinh® v 4 cos2

and give graphs of Py below.

[\

Py (log(w/Iso]))

The indefinite integral is given by

inh
/Pg(v) dv = arctan (sm Ov)

COs

and

<
—/ Py(v)dv =1 forallg.
i

—00

G. Vinnicombe
M.C. Smith
November 2002



4F1 2010 — Answers

1(a) Spec. A implies K(0) > 100. (b) wy < 13.49 rad/sec.

2(a)(ii) G(s) has a zero at s = 0 but no other zeros in the right half-plane.
148

5 K(s) —
(€)() K(s) = T

is one possibility.

3(b)(i) Initial slope of step response:

—1
H?=1 %)

[Ties B
(c)(i) Initial slope of step response: 0. Derivative of initial slope of step

response: 1.

M.C. Smith, 24 May 2010





