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Module 4M13

COMPLEX ANALYSIS AND OPTIMIZATION

Answer not more than three questions.
The questions may be taken from any section.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachment:

4M13 Datasheet (4 pages).

Answers to Sections A and B should be tied together and handed in separately.
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Single-sided script paper Engineering Data Book

Graph paper CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
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SECTION A

i Figure | shows the streamlines of an ideal (inviscid and irrotational) fluid flowing

into a 90° corner formed by the positive x and y axes, which are drawn using thick black

lines.

Fig. 1

(a) Identify a simple conformal mapping G(z) that maps the thick boundary onto

the real axis of the complex plane. [30%]
(b) Hence determine the velocity field v(x,y) = (vx(x,y),vy(x,y)) of this fluid

flow near the corner. [50%]
(c) By considering the velocity field found in (b) in the limit x — o, comment on

the validity of the result far away from the corner. [20%]

2 Using contour integration, evaluate the following integrals;
(@ [2.cos(Ax)/(x*+1)dx, A >0 [50%])

[50%)]

(b) Jo sin(x)/xdx
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SECTION B

3 (a) Explain how slack variables can be used to convert inequality constraints
into equality constraints in linear programming problems. [10%]

(b) A mining company operates three types of mine: opencast, mechanized and
labour-intensive. The operating details to produce one million tonnes of coal per year at
each type of mine are given in the table below.

Opencast Mechanized  Labour-intensive
Workers (thousands) 2 5 10
Cutting machines 4 2 1
Annual profit (M) 10 5 -1

The mining company has 70,000 workers and 50 cutting machines available. For
political reasons all 70,000 workers must be used and at least five million tonnes of coal
each year must be produced at labour-intensive mines. It is not necessary to use all the

cutting machines.

(i) Formulate the task of finding the number of mines of each type that
maximizes annual profit as a linear programming problem in standard form. [20%)]

(i) Identify a suitable feasible initial solution to this problem. [10%]

(iii) Solve this problem using the simplex method. (You may treat integer
variables as continuous ones for this purpose.) Hence show that the
maximum profit the mining company can make is £95M per year. [50%]
(iv) How is the optimum affected by the number of cutting machines

available? [10%)]
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4

4 A biofuels company is considering setting up production facilities in each of »n
different regions. The company is committed to providing A jobs in region i,
i=1,2,...,n. The directors wish to allocate their initial capital investment k in such a
way as to maximise total annual biofuel production. Each factory’s annual production
p; follows the Cobb-Douglas production function, p; =a;/x;/; , where x; is the
capital investment in factory i and g; is a constant, the value of which depends on the

region.

(a) Formulate the task of allocating the initial capital investment optimally
between the n factories as a constrained optimization problem in standard form.

(b) Use the Lagrange multiplier method to find the optimal allocation of capital
investment in terms of the values of g;, A; and k.

(c) The company’s finance director suggests investing an amount b of the
capital in bonds yielding an annual interest rate ¢ rather than in the factories. Suppose

that a profit p is made on every unit of biofuel produced. If the objective is now to
maximize profit, show that a suitable objective function to be minimized is

n
f=-ob—- pZan/xihi
i=1
plalh
40

. How much capital should

and that the optimal investment in each factory x; =

be invested in bonds?

END OF PAPER
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4M13
OPTIMIZATION
DATA SHEET

1. Taylor Series Expansion

For one variable:
FO0) = FO5) + G=a FO5) + L= ) R
For several variables:

F(x) = fx)+ VA (x-x") + %(X~x*)TH(x*)(X ~X') +R

where
o] LA
é‘;l‘ 8x12 8xl axn
gradient Vf(x) = | : and hessian H(x) = V(Vf(x)) = : L
of of f
9x, | dx,dx,  ox’

H( x*) is a symmetric nxn matrix and R includes all higher order terms.

2. Golden Section Method

f (x)% (a) Evaluate f(x) at points A, B, C and D.
Ax  _ d-Ax
d—Ax d (b) If f(B) < f(C),new interval isA— C.
AFX = 0382 If f(B) > f(C),new interval is B~ D.
If f(B) = f(C), new interval is either
d=1, A-CorB-D.

\ 1 N Y (c) Evaluate f(x) at new interior point. If

not converged, go to (b).

Ax Ax
A B C D <

4M13 1 20/10/02



3. Newton’s Method
(a) Select starting point X,
(b) Determine search direction d, = —H(xk)_l Vf(x,)
(c) Determine new estimate X4 = X, td,

(d) Test for convergence. If not converged, go to step (b)

4. Steepest Descent Method

(a) Select starting point x,,

(b) Determine search direction d, = ~Vf(x,)
d’d
(c) Perform line search to determine step size a, or evaluate o, = ek k.
T
_ ) d, H(x,)d,
(d) Determine new estimate x, | = X, + o, d,
(e) Test for convergence. If not converged, go to step (b)
5. Conjugate Gradient Method
d,d,

(a) Select starting point x, and compute d, = -Vf(x,)and o, = ——— —~

(b) Determine new estimate x, = X, + o d,

VIO
(c) Evaluate Vf(x, ) and B, = PIVT;:)‘T'}
(d) Determine search direction d, | = = Vf(x,,,) + B,d,

T
dy V(X )

T
d, . H(x,, ) d;

(e) Determine step size o, | = —
(f) Test for convergence. If not converged, go to step (b)

6. Gauss-Newton Method (for Nonlinear Least Squares)

If the minimum squared error of residuals r(x) is sought:

Minimise f(x) = i rA(x) = r(x) r(x)

i=1
(a) Select starting point X,y

(b) Determine search direction d, = ~ | J(xk)TJ(xk) ]—1 J(xk)Tr(xk)
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v;—l(x)ﬂ dx, 7 dx,
where J(x) = : = :
Vr (x)TJ

r
m m Hnt

dx, = ox

(c) Determine new estimate x, | = x, +d,

(d) Test for convergence. If not converged, go to step (b)

7. Lagrange Multipliers
To minimise f(x) subject to m equality constraints ,(x) = 0,7 = 1, ..., m, solve the sys-

tem of simultaneous equations

VAKX + [VR(x)]"A =0 (n equations)
h(x*) =0 (m equations)

where A = (4, 4,] T is the vector of Lagrange multipliers and
oh, oh
'871 . "a‘g
k. 4T <
[Vh(x) ] = [Vh,(x*) th(x*)J =] .
oh, oh
n n

8. Kuhn-Tucker Multipliers
To minimise f(x) subject to m equality constraints ,(x) = 0,i = 1, ..., m and p inequal-

ity constraints g(x) < 0,i = 1, ..., p, solve the system of simultaneous equations

VAX) + [VR(X) 1A + [Ve(x)]"r =0 (n equations)
h(x') =0 (m equations)
Vi=1,..,p, u;(x) =0 (p equations)

where A are Lagrange multipliers and p > 0 are the Kuhn-Tucker multipliers.
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9. Penalty & Barrier Functions

To minimise f(x) subject to p inequality constraints g.(x) < 0, =1, ..., p,define
q(x,p,) = f(x) + p, P(x)

where P(x) is a penalty function, e.g.

P
P(x) = (max|[0, g,-(x)])2

i=1

or alternatively
1

5B

q(x,p,) = f(x) -

where B(x) is a barrier function, e.g.

P

Bx) = ¥ O.(lx)

i=1°

Then for successive £ = 1,2, ... and p, such that p, >0 and p, , > p,, solve the prob-

lem
minimise g (X, p,)
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