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1 (a) It is convenient to use a reference frame that moves with a speed U /2 in the
~+x direction, so that the fluid velocities in the two regions z < 0 and z > O appear equal
and opposite. We will consider the development of a wavy (sinusoidal) perturbation to the
vortex sheet. By symmetry such a disturbance does not travel in x direction. In the upper-
half plane (z > 0), consider two streamlines, one at a sufficiently large distance (large z)
where the streamline is nearly a straight line and the other close to the perturbed vortex
sheet with the same sinusoidal shape. The space between these two streamlines forms a
stream tube. For an incompressible flow, conservation of mass requires the flow speed
to increase at crests and decrease at troughs. Through Bernoulli’s equation, pressure
at A is lower than at C. Similarly for the lower-half plane, the pressure at B is higher
than at D. For an undisturbed flow the pressure would be a constant along the interface.
Thus, it is clear that, the pressure at A tends to be lower than at B, and the fluid must
accelerate upwards at A and B to balance this pressure difference. In a similar way, there
is acceleration downwards at C and D. Such accelerations increase the amplitude of the
perturbation and the flow is unstable, the instability being known as the Kelvin-Helmholtz

instability.
A
/TS—
c
D
Physical mechanism of Kelvin-Helmholtz instability
®) ® If we substitute ¢(x,7) = Ux -+ f(z)exp(st + ikx) in Laplace’s
equation, we get:
d2f
—k2f+—2 =0. 1

f+53 (1)

The general solution to this ODE is

— —kz kz

f(z) = Aje™ ™+ Age™, (2)

for constants A; and As. But, since the velocity must remain finite as z — @,
A>=0, and we have '
¢ (x,t) = Ux+ A e Tk )
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forz > n(x,t). A similar argument, using the finiteness of velocity as z — —,
leads to
(p (x’ t) — Bl eSt+lk)C+kZ (4)

forz < n(x,t).

(ii) The z-coordinate of the fluid particles that make up the interface is
1(x,t). The z-velocity is therefore Dn/Dt, where D/Dt is the material
derivative. The velocity can also be written as d¢/dz. Therefore,

9 _Dn_om  d¢dn )

oz Dt ar  Jdx dx
on z = n(x,t). As we are considering small amplitude disturbances, A, B
and 1j are all so small that their products can be neglected. This means that,
after noting the form for ¢ (x,#) in Eq. (3), we can simplify Eq. (5) to

¢ dn an

dz ot d9x ©
on z = n(x,t). After substituting for 1 {(x,¢) and ¢(x,t), we obtain
—Arke™ 1 = (s 4+ kU)ng %)
Linearisation simplifies this still further. For small 47 the expansion
e M =1 —fn+--- (8)

shows that, when all nonlinear terms are neglected, the kinematic boundary
condition simplifies to
Ay =—(s/k+iU)np. )

forz > n(x,t). A similar argument for ¢ (x,) from Eq. (4) leads to
B=s/k (10)

for z < n(x,t).

(iii) Applying Bernoulli’s equation in z > n(x,t), we get

2
ap 1 [ B 1,
p+pat+2p(§x) TpgN =pet5pU (1D
The form for ¢ from Eq. (3) shows that on z = n(x,2),
I¢ g 2 ; sttikx—k .
= =U*+2UikAye " + nonlinear terms (12)
x
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Substitution for ¢ and 1 in Eq. (11) leads to
P(X:ﬂ:‘) = Po — P(S + ikU)AleSt+fk‘x—kn —_ pgnoest“‘ikx ([3)

Finally, after using the expansion in Eq. (8) and neglecting any nonlinear
terms, we obtain

p(a1,8) = poo — (s +ikU) A" T — p e Hikx (14)

A similar consideration of the region z < n(x,?), with ¢ from Eq. (4), leads
to
est+ikx

p(x,1,t) = po — psB) —panpe® tk (15)

Since these two forms for the pressure must be equal

A\ (s+ikU) = Bys (16)
Substitution for A| and B, derived in part (ii) leads to

(s+ikU)* +5> =0 (17)
The solutions of this quadratic equations are

1
s=—kU(i£1) (18)

Croun\\Ner's CONANARITT

(a) This was answered well by most students. About half the students found it
difficult to explain why velocity would increase above a crest (or decrease
above a trough) after a vortex sheet is deformed in a sinusoidal shape.

(b) The first part of this question was answered extremely well by most students.
The second part was also answered well. Some students lost marks for not
explaining their reasoning, particularly for dropping higher-order nonlinear
terms. For the last part, about a quarter of the students did not use the correct
form of the Bernoulli’s equation, even though it is in the Data Card.
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2 (a) Consider two thin coaxial rings of fluid A and B. Each has mass ém. The
idea is to investigate the change in kinetic energy when these two rings swap positions.
Initially the fluid in ring A is at radius r; and so has azimuthal velocity V| =V (r{), while
ring B is at ry (ry > ry) with flow speed V; = V(r5). The initial kinetic energy of the fluid
in these two rings is therefore 1 /2(3m(V12 +V22). Now suppose that the fluid in ring A
moves to radius ry, and by continuity the fluid in ring B moves to ry. As the fluid in ring
A is moved, its angular momentum is conserved and so rV remains constant and equal to
r1Vy. The velocity of the fluid A at its new radius r; is therefore r1 V| /rp. By a similar
argument the velocity of the fluid in B at its new radius rq is rpVp/r;. The new kinetic
energy is therefore

1 vz  r2v2
om| L+ 222 ). 19
on(B e
Hence the change is kinetic energy,
| 1 1
ME:EMw%ﬁqﬁ@(ﬁ—ﬁ) (20
. 2 I
The circulation I'(r) around a circle of radius r is given by ['(r) =2xrV (r). Therefore,
1 s o 11
AKE=—8?5m(F1 —TI%) ;?—;g 21

Since ry > ry, the terms in square brackets is positive. When I 2 decreases with 7, the
perturbation releases kinetic energy from the basic flow, leading to instability. When r2
increases with r, the perturbation increases the kinetic energy of the basic flow. Therefore,
an energy input is required to produce such a disturbance, and we can say that the flow is
stable.

by W Continuity equation is given by
V-u=0, (22)

where u = {U,V}. Because the velocity field is axi-symmetric, the continuity
equation becomes

ou(r) U

= 0 (23)
or r
= InU = —Inr+Ini 24
where A is a constant. Therefore,
A
U=— 25
r
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(i) Because the flow is assumed to be inviscid, the angular momentum
would be conserved. Therefore,

V(r)r = constant = (26)
This implies that
V= B 27)
r

(iif) T =2xVr =2xp = constant. Therefore, the flow is neutrally stable.

(c) Let the rotation rate of the inner cylinder by given by Q. Below a critical
value of the rotation rate of the inner cylinder, say Q., the flow would be stable and
would have the form of a basic Couette flow. At Q; = Q,, we get a new steady flow
that consists of toroidal vortices, called Taylor vortices, that fill the gap between the two
cylinders. The Taylor vortices are stable for a range of rotation rates Q| > Q.. But,
as € increases beyond a second critical rotation rate .5, the vortices become unsteady
and waves propagate azimuthally around the vortices. As the rotation rate is increased still
further () > Q.3), the flow becomes chaotic. Finally, above a fourth critical rotation rate,
the flow becomes fully turbulent and the azimuthal waves vanish. |

(a) This was answered well by most students

(b) The first part of the question was answered well. For the second part, about a
third of the students could not solve it as they did not realize that the angular
momentum is conserved if the flow is inviscid. This was unexpected as they
used this concept to answer part (). The last part of the question was answered
well by most students. About a quarter of the students lost marks because they
incorrectly used the total velocity instead of the tangential velocity to calculate
the circulation around a circle.

(c) This part was answered extremely well by most students. Some students lost
marks for not mentioning that at low rotational rates of the inner cylinder, the
flow is stable and laminar.
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Fig. |

(a) At point B, the fluid changes angle by 6, + 6 anticlockwise, which we shall
call ¢. The rate of change in momentum in the direction of the bisector of ABC (the
nearly horizontal dashed line) is 2mU sin(¢/2). This equals the centrifugal force at point
B. For small 8, and 6, this force equals mU (62 + 8y ).

(b) The moment about B due to the force F equals FLcos 8, (anticlockwise).
The moment about B due to the spring at B equals k(6 + 8) (clockwise). In static
equilibrium, the moments balance so FLcos 6; = k(6; + 6,). For small 8, this becomes

FL=k(6,+6;) (D

(¢) Forsmall 8; and 6, the moment about A due to the centrifugal force at B is
mlUL{6, + 6;) (clockwise). For small 8| and 6, the moment about A due to the force
F equals 2FL (anticlockwise). The moment about A due to the spring at A equals k6
(anticlockwise). In static equilibrium, the moments balance so

mUL(8 + 8)) = 2F L + k8 )

(d) The displacement, X, is equal to Lsin(6;) — Lsin(§;). For small 8; and 6,

we have
X=L(6—06) 3
mpj01 (TURN OVER for continuation of Question 3
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Substituting (1) into (2) gives

k9, = 2FL—mUL?F [k 4)
Substituting (4) into (1) gives
FL = k6 —2FL+mUL*F/k (5)
= kO = 3FL—mUL*F/k (6)
Substituting (4) and (5) into (3) gives:
X = fkiz(s —2mUL/k) Q)

(&) For 0 <mlU < 5k/(2L), the force, F, causes a displacement, X, in the same
direction as the force. This is the normal behaviour one would expect from a spring. For
mU > 5k/(2L), however, the force causes a displacement in the opposite direction to the
force. This is very curious behaviour. It is like a spring with negative stiffness.

‘ (f) If C is allowed to move vertically but not horizontally, the apparatus will
buckle when mU > 5k/(2L).

This apparatus was first reported in Nature Vol. 296, p 135.

EXounness conna

(a) This part of the question was well answered by most candidates. Some candidates
lost marks for not explaining their reasoning.

(b & ¢) Around one third of the candidates answered these sections correctly, which
was a surprisingly low number. The most common mistakes were to say that the angle
at B is 6,, rather than (6, + ¢,) and that the distance from A to C is L rather than 2L.
(d) No candidates answered this part correctly, even when wrong answers to (b & c)
were taken into account. Most candidates got stuck because they did not try to express
Xin terms of 8, and ;. Many tried to use virtual work instead.

(e) There were some reasonable qualitative descriptions of the forces in the
experiment but, with no correct answers to (d), there were no correct answers to ().
(f) This part was extremely well answered. Most candidates realised that it is
equivalent to a buckling pipe, which is described in the notes.
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4 As part of a drying process, a membranc is held in tension 7' between two streams

of air moving at speeds Uy and U in opposite directions to each other.

Ui
T <« - T
U,

Fig. 2

Considering disturbances to the membrane with amplitude proportional to el(kr—a1) he

dispersion relation for this system is found to be:
Ui+ + (U —¢)* —kT =0 )

where c, the phase speed, is equal to w/k. The group speed is equal to d@/dk. If the
system is absolutely unstable then the wave with zero group speed has positive growth

rate.

(a) The amplitude, A, can be expressed as
A= Aoei(fu-wt) = elkxgmimn _ Jikrx—kix o it oyt 9)
= {cos(krx)+isin(krx)} {cos(wyt) —isin(@ye)}e %D (10)
From this we see that: k. is the wavenumber in space (i.e. k= 2x/A, where A is the
wavelength); @, is the angular frequency in time (i.e. @ = 27 f, where f is the frequency
in Hz); k; is the growth/decay rate in space (i.e. for &; > 0, the amplitude reduces

exponentially as x increases); @j; is the growth/decay rate in time (i.e. for @; > 0, the
amplitude increases exponentially as ¢ increases).

(b) Solve (B) for w as a function of k:

(U +e)2+(Us—c)>—kT = 0 (11)

= (U2 +2U1c+c?) + (U} —2Use+2) —kT = 0 12

= cz—f-(U;—Up_)c—i—(Uf‘+U22—kT)/2 =0 (13)

= ¢ = _—_——W‘;Ul)i%\/(ul—02)2—2(U,2+U§—k7‘) (19)
(Uy — Uy -

- ¢ = gz_ﬂi\/_ug_zu,u__ugukr (15)

Up—Up) |
= e = 2L ey 16)

Forreal £, (16) has real solutions for ¢ when 2T > (U + U )2. Therefore all disturbances
are stable when k > (U} + U3)2/(2T).
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(c)
d I
@((U,+c)2+ko'2-c)2—k’r) =0 (7
de dc
(z(u,+g)?‘z—2(uz—c)ak-—r) = 0 (18)
22Uy - U +2c)d—c~7‘ (19)
1 —Us i
but
de d roN
& d—k(z) (20)
1/de o
- (2 _¥ 2
k(dk k) @b
Cog—C
= (22)
therefore
22U —Uy+2c)(cg—c) = kT (23)

therefore, the phase speed, ¢, equals the group speed, cg, only whenk=0o0r T =0. The
first condition, k£ = 0, corresponds to waves with infinitely long wavelength, which is a
perturbation to the base flow rather than a wave. The second condition, T =0, corresponds
to the case with no tension, which is a very special case. In general, therefore, the phase
speed differs from the group speed.

(d) We can start from either the expression derived in part (b) or that in part (c).
That in (¢} is more convenient. :

2Uy—Up+2c)(cg—c) = kT 24)
= 4c(cg—c) = kT (25)
kT
Ce °t e (26)
(27
This equals zero when 4¢% = kT, but we need to find an expression for ¢? in terms of k.

This is easiest to do by starting from (8):

(U+c)>+(U—c)* = kT (28)
= (U?+2Uc+ )+ (U? —2Uc+c*)?* = kT (29)
= (2U%+2c%) = kT (30)
=2¢* = kT —2U2 (1)
and therefore cg = 0 when
2T —20%) = —kT (32)
=T = 2U2%/3 (33)
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We can see from part (b) that, at this value of k, the term in the square root is 4U 2 /3—4U 2
which is negative, and therefore that the system is absolutely unstable because the wave
with zero group velocity has positive growth rate. The implications are that small
perturbations will grow on the membrane and remain in the same place. This is likely
to cause corrugations in the membrane, which is a common problem in papermaking.

This problem is a simplified version of problems in papermaking described in Ann. Rev.
Fluid Mech (2011) Vol. 43 pp 195-217.

. . '
EXQM INEC'S COMMEnt : This question had a lot of algebra and

most candidates made some small mistakes. These were not heavily penalised and the
majority of marks were given for showing physical understanding.

(a) This was answered well by most candidates.

(b) Almost all candidates knew how to determine the wavenumber above which all
disturbances are stable, by setting the wavenumber to be real and searching for
conditions at which ¢ (or omega) is purely real. Most candidates scored well on this
section, although many made mistakes in the algebra. '

(c) Around one third of the candidates completed the algebra for this question and
discovered that either the wavenumber or the tension must be zero. These candidates
commented on the physical meaning of one or the other, but nobody commented on
both, which was surprising. ’

(d) Around one quarter of the candidates completed this section. The discussion of the
implementation was well answered by those who made it this far.
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