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If we consider an infinitely small differential of the aperture, dS,
we can model this as a point source of light emitting spherical
‘Huygens’ wavelets with an amplitude of 4(x,y)dS. The wavelet
acts as a radiating point source, so we can calculate its field at
the point P, a distance r from dS. The point source dS can be %l § i
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considered to radiate a spherical wave front of frequency ©. As
soon as the wavelets propagate from the aperture, the edges
(where adjacent wavelets are missing) begin to propagate with
reduced energy. This changes the summation of the phases and
after a few wavelengths of propagation, the plane waves are
distorted and wrinkled. This is the near field region.
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Assumptions: Plane wave coherent (laser) illumination of the aperture. Only consider forward
propagating waves. Aperture is larger than wavelength x2.

b) In order to understand and analyse the propagating wavelets, a series of approximations and
assumptions must be made. If we consider only the part of the wavelets which are propagating in the
forward (+z) direction and are contained in a cone of small angles away from the z axis, then we can
evaluate the change in field dF at the point P, due to dS. As the wavelet dS acts as a point source, we
can say that the power radiated is proportional to 1/#” (spherical wavefront), hence the field JE will be
proportional to I/7. We can see that for a real propagating wave of frequency ® and wave number £, (k
= 2m/A) we have the cosine component of a complex wave. The full complex field radiating from the
aperture can be written in terms of exponentials as the cosine is just the real part of the complex
exponential. -
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Now, we need to change coordinates to the plane containing the point P, which are defined as [o,].
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The final full expression in terms of x and y (dS = dxdy) for dE will now be.

Such an expression can only be solved directly for a few specific aperture functions. To account for an
arbitrary aperture, we must approximate, simplify and restrict the regions in which we evaluate the
diffracted pattern.

dxdy




If the point P is reasonably coaxial (close to the z axis, relative to the distance R) and the aperture
A(x,y) is small compared to the distance R, therefore r = R. The similar expression in the exponential
term in the top line of the original equation is not so simple. It can not be considered constant as small
variations are amplified through the exponential. To simplify this section we must consider only the far
field or Fraunhofer region where.
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In this case, the final term in the exponential ((* + y*)/R?) can be considered negligible. To further

simplify, we use the binomial expansion,
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and keep the first two terms only to further simplify the exponential expression.
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The total effect of the dS wavelets can be integrated across dE to get an expression for the far field or
Fraunhofer diffraction pattern.
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Aperture

dE = dxdy

The initial exponential term & ~*® refers the wave to an origin at ¢ = 0, but we are only interested in
the scaling of relative points at P with respect to each other, so it is safe to normalise this term to 1.
Thus, our final expression for the far field diffraction pattern becomes:
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Hence the far field diffraction pattern at the point P is refated to the aperture function 4(x,y), by the
Fourier transform.

¢) The pixel pitch and shape governs of the hologram defines the envelope function of the replay field
and therefore define its overall physical size. The shape of the envelope is related to the shape of the
pixel via the FT, hence a square pixel gives a sinc envelope. The pixel pitch also means that the
hologram is effectively sampled, hence there will be an ordered harmonic structure via the FT. Ie a
regular array of pixels gives a regular array of orders in the replay field.
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Which can be expressed as a convolution of two functions, pixel shape and its pitch.
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After the Fourier transform, the shape is a sinc with orders.
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d) The sidelobes of the replay field have two fundamental origins. 1) The shape of the pixel is square,
therefore the RPF is within a sinc envelope (with sidelobes). If we change the shape of the pixel to one
which has no sidelobes in the Fourier domain then we remove them from the final hologram RPD.

This could be done using pixels that have a Gaussian profile as the FT of a Gausian is another Gaussian
function. 2) The repetition of the central order comes from the sampling of the pixels in the hologram.
They are effectively sampled on a train of delta functions which FT’s to a similar train of orders in the
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RPF. This could be avoided by removing this structured nature of the sampling in the hologram. If the
pixels were positioned at random intervals, then the sidelobes of the sinc function would contain no
energy. Neither of these solutions are terribly practical however.

b) The FT can be found by finding the FT of a binary amplitude grating and then
convolving a horizontal and a vertical pattemn. This can then be converted to binary

phase.

A single pixel has the FT of a sinc function.

If we extend the pixel to infinity then is reduces the sinc width to a delta function. If
we space the pixels on a regular grid, the we introduce odd harmonic orders.

A
Spacing is two times half of the sinc envelope first order = —fA—

Croumners coranneny:

Well answered. Basic book work with a Jew twists.  All coped with diffraction but o lot
glossed over r = R. Virtually nobody go the origins of the outer orders.



Q2 a) Such a far field distance is clearly difficult to achieve in practical terms, so a means of
shortening the distance is needed. If a positive focal length lens is included directly after the aperture,
the far field pattern appears in the focal plane of the lens. A positive lens performs a Fourier transform
of the aperture placed behind it.

The application of Snell’s law at the spherical lens/air boundaries of the lens shows that the lens
converts plane waves incident upon it into spherical waves convergent on the focal plane. For this
reason, the diffraction to the far field pattern now occurs at in the focal plane of the lens. In order to
display a grating or computer generated hologram (CGH) we need to be able to understand the effects
that optical components will have on the replay field. The spatial coordinates (u,v) are related to the
original absolute coordinates (¢, 8) by the relations.
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Hence, the scaling of the FT is inversely proportional to £, and as the focal length shortens, the FT
shrinks in dimension. Also, the replay field is a function of the wavelength A, hence different
wavelengths will produce different size replay fields. We can use the above relationships to directly
calculate the positions of peaks in the hologram's replay field.
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A two dimensional grating or hologram comprises of NxN square apertures (pixels) with a pixel pitch A
having an amplitude 4 given by either amplitude modulation [0,1} or phase modulation [+1,-1]. The
two dimensional envelope due to the fundamental pixel which covers the far field diffraction pattern
(or FT) of the hologram is just a 2-D sinc function (where a=A).
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The useful information of the replay field is contained in the central first lobe of the sinc function, so
we can calculate the width of the replay field as where the first zero of the sinc function occurs (mdu =
=, TAv = 1t}. We want the coordinates in terms of [o,B], 50 we use the above transformation to get.
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The choice of modulation of the CGH has a very strong effect on the RPF. If a static hologram is made,
then binary phase is the simplest and cheapest option, but that limits the RPF to a 180 degree symmetry
and will have higher noise. Multi-level phase helps to break this symmetry but is harder to fabricate.
A LC device could also be used — either nematic (multilevel but slow) or a FLC (binary but fast).

b) The target function in Fig 2 is 180 degree rotationally symmetric, hence we can use a binary phase

scheme to create the CGH. If the CGH was to be a static or fixed design then we could use a patterned

thin film layer or step function created by photolithography. Many

different photoresists or polymers could be used as long as they were yo

sufficiently transparent and the correct thickness for a pi phase shift :

between a step and a gap. If the CGH was to be dynamic, then an X

FLC SLM could be used, optimised for binary phase at that _‘l——

wavelength. Tt could be used without polarisors by using the right ! Id/z

FLC material and pi retardance. i I -

The target function does not need to have both lines due to :

the symmetry. It should include some of the background areas as :
i
1

well when calculated to help reduce the background noise as close to
zero as possible.




¢) From this we can assume that an NxN pixel hologram will generate NxN spatial frequency ‘pixels’
in the replay field with the pitch.

a = ﬂ_ p = _]i
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Hence 0 = B = 20.8um. For a 512x512 pixel CGH (or any even number of pixels), the central point
of the plane can be set at either (256,256) or (255,255) as the actual centre lies between those points.
Hence for the d = 100 pixel spacing it is possible to locate the bars exactly 50 pixels either side of this
central point Hence it is possible to locate an exact 180 degree symmetrical position for the target, so
when the CGH is calculated the spacing will be 100x20.8 =2.08mm. In the case of d = 101 pixels, it is
not possible to maintain the symmetry by ¥; a pixel, hence the spacing will either have to be 100 or 102
pixels.

d) There are several factors that will lead to imperfections in the RPF generated. 1)The number of
pixels and the pitch fix the aperture of the hologram, this then defines the shape of the spatial frequency
‘pixels” in the replay field. This is apodisation and the delta functions above become a convolution of
the FT of the aperture and for adjacent spots in the RPF, the sidelobes of D will interfere. Possible
solution: space spots in the RPF w1th gaps or change the sapling of the CGH.
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H(u,v) D(u,v) G(u,v)
2) The central order of the CGH is the central lobe of the overall sinc envelope due to the square pixels.
This means that even if the simulated CGH has a perfectly even amplitude for the bar, the actual bar
will follow the profile of the sinc in the generated RPF. Solution: sinc compensate the target profile of
the bar with the reciprocal values of the sinc envelope.
3) No lens is perfect and there will be aberrations. Solution : use a doublet lens or custom optics.

Gomners COMMSY!

A new question with most understanding the ideas behind CGHs well, but a few could not tell
a technology from an algorithm. No one spotted the fact that a separation of 101 pixels was
not possible with N even..



Q3 a) The matched filter architecture is laid out in a linear fashion.

The input image s(x,y) is displayed in plane 1 on SLM#1 before the FT into plane 2.
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The FT of s(x,y) is then multiplied by the FT of the reference r(x,y).
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The FT of the reference is done off line on a computer and is defined as the matched filter R(w,v) for
that particular reference r(x,y). The filter is displayed on SLM#2. In fact, the generation of the filter
may be more complicated (to include invariances).

The product of the input FT and the filter then undergoes a further FT to give the correlation in plane 4.
The object in the reference r(x,y) is cenired in the process of generating the filter R(x,v), so that if a
correlation peak occurs, its position is directly proportional to the object in the input image, with no
need for any decoding. Unlike in the JTC, there is only one correlation peak and there are no DC terms
to degrade the correlator output.

The best test for any matched filter is to perform an autocorrelation with the filter that has been
generated. The reference image r(x,y) is used as the input to the correlator to judge its performance and
the autocorrelation will have optimum SNR. The MF autocorrelation peak is very broad and has a huge
SNR, as there is no appreciable noise in the outer regions of the correlation plane. Such a filter is not
very usefil for pattern recognition as such a broad peak could lead to confusion when the position of
the peak is to be determined. Also, similar shaped
objects (such as the letter F) will correlate well with
the filter leading to incorrect recognition. Another
identical E which is placed in the input along with the

original one will also cause problems as the

correlation peak will take an extremely complex
structure. Finally, the filter is a complex function and
there is no technology available to display the filter in
an optical system. e

b) Great improvements can be made to the usefulness of the correlation peak, by using a phase only
matched filter (POMF). The matched filter F(i,v) is stripped of its phase information (i.e. the phase

angle of the complex data at each pixel) and this is used as the filter in the correlator.
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The autocorrelation for the POMF is much more desirable
even though there is a reduction in the SNR due to the
increase in the background noise. The correlation peak is
much narrower which is due to the information which is
stored in the phase of the matched filter. The POMF is the
most desirable filter to use as it has good narrow peaks but
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still remains selective of similar structured objects (like Fs). The POMF is also a complex light
modulation scheme, so the problems associated with binary phase (180° symmetry) will not occur.
However, the continuous phase structure of §(#,v) means that it cannot easily be displayed in an optical
system. Twisted nematic displays are capable of multilevel phase modulation, but the quality is poor,
difficult to control and they are slow. There is the possibility that new FLC crystais and phases may
allow the implementation of four level phase modulation in the near future.

The penalties associated with going to binary phase are greatly out weighed by the advantages gained
by using FLC SLM:s in the optical system.

1) The SNR is up to 6dB worse than the case of the POMF.

2) The filter cannot differentiate between an object and the same object rotated by 180° (due to
the fact that the BPOMF is a real function).

3) The BPOMTF is not as selective as the POMF due to the loss of information in the thresholding.

The binary phase is selected from the POMF by two thresholds &; and &,. These the thresholding is

done such that.
{0 R Y
F, = ’

BPOMF T QOtherwise

The selection of the two boundaries is by exhaustive searching, as it depends on the shape and structure
of the reference used to generate the filter. The benefits of this process are not high and it is only likely
to improve the SNR by a few percent. A safe threshold to get consistent results is §; = -7/2, & = 7/2.

¢) The BPOMTF is made as follows:
Input

2 B/S SLM
Input fibre

from laser //\ ; o

A

Li
=02
Q L2 Fast
L3 4 CCD
==
Filter SLM B/S polu

The modulated light passes through lens £, which performs the FT of the input image. The FT is formed
in the focal plane of the lens and will have a finite resolution (or “pixel’ pitch) given by.

a = L
’ N 1 A 1
There are N; ‘pixels’ in the FT of the input image on SLM|1, hence the total size of the FT will be N4, .
The BPOMF is displayed on SLM2 in binary phase mode. SLM2 is also a FLC device with NV,
pixels of pitch 4,. The FT of SLM1 must match pixel for pixel with the BPOMF on SLM2 in order for
the correlation to occur. For this reason we must choose fj such that.
NA =nN,A
1 0 2 2
Hence we can say.
N A A
f = 2 2 1
0 A
The required focal length to match the input FT to the BPOMF nearly always impractical as an
experimental system as it would be physically too large. It is possible to shorten the actual length of the
optical transform whilst still keeping the effective focal length that is desired by including further
lenses in a combination lens. One technique is to combine a positive lens with a negative lens to make
a two lens composite. This gives a length compression of around f/5 which in the example above is
still 2m and impractical. Furthermore, the two lenses combine in aberrations which leads to poor
correlations due to optical quality, hence a 3 lens is needed at the filter SLM surface.

Exoraners commeny

Standard bookwork answered well on the origins of patc;zed filtering. A few missed.the role
of the POF in the evolution. Not many spotted that an LCOS device must be reflective when
designing the last part.
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Q4 a) The question specifies a monomode fibre. Therefore we only need consider intramodal
dispersion (intermodal dispersion cannot occur). Dispersion can be thought of as the temporal
broadening of optical pulses.

Intramodal dispersion occurs due to a range of frequencies being present in the optical source. This
may be due to either a broad linewidth source (such as an LED, as opposed to a laser):

LED source Laser source

Intensity
Intensity

wavelength wavelength

... or due to the frequency content of pulsed data packets:

FT
—

Amplitude
Amplitude

{
' Time Frequency

These. frequencies travel at different speeds down the fibre, and therefore arrive at different times. The
pulse therefore spreads out temporally. If optical pulses spread too much, then sequential signals may
overlap with one another and be lost. This limits time-division multiplexing, and puts a maximum

limit to the data carrying capacity of the fibre.
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b) (Eq.61) Bandwidth-Length product: BL lits ls "m-—= c
2 $1 Tn, -~
. .. ! - c
Therefore, the bit-rate is simply: B Birs /5=
20 % —n, -

¢ =3x10%m/s, L = 100 km, r; = 1.5000 (core), n; = 1.4999 (cladding)

Substituting values gives: B =1.5 Mbits/s
(1 Byte = 8 bits) : =187.5kB/s
= 675 MB/hour

Therefore they can send 675 documents (each of IMB size) in 1 hour.

¢) Bending of optical waveguides can cause the leakage of light (and therefore also data) out through
the cladding. The competitor could therefore simply bend the fibre and “read” the data as it leaks out

at that point.



To explain this, the simplest way is to use the ray model of light propagation within waveguides:
Bending of the fibre causes the incident light within the core to strike the cladding interface at angles
that exceed the critical angle for total internal reflection. The light is therefore partially reflected, and

partially refracted out through the cladding.
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Ray model EM model

Students may instead also provide a similar explanation using the EM model of wave propagation,
whereby light at the outside edge of the bend, has to travel at a faster speed (exceeding the speed of
light) in order to keep up with light on the inside. It cannot do this, and so is lost to the cladding.

We find the critical bending radius, R. from the following (eq. 64): R_~

Where, N4 = 4/n> ~n? (Eq.13), so that: R, ®——

Substituting the following values: a= 15 pm, n; = 1.500 (core), n, = 1.499 (cladding), gives: R.=
5.002 mm.

a
7

d) The initial experiment can be used to characterise the bending loss in the fibre and then that value
used to estimate the loss of the 90degree bend.

ps_ -
(Eg. 51): Loss in optical power characterised by: _{\: exp Co, _
P -
. . R
(Eq. 62): Bending loss coefficient: & = Cexp [' —}
. R
r Is h
o o pE_ -R
Combining these equations gives: ——— exp i_‘ zC exp | —— _i
PO R

We first substitute values for the “controlled experiment”, where:
P(z)/P0)="%, R=10cm, z=10x2aR, R, = 5.002 mm (from part (¢)).

mpSipg_ .
~5.3096 x 10" m
20 7R.exp € R/R_ -

Rearrange for C gives: C —

Now we have a value for C, we can use it in the 90° bend situation, where:
R=7cm, z=%x2nR
P 2~

I » (_ \]
Substituting these values: ———= exp | ~ ——C exp t J l
rp€— ) R, )]
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‘ rp€_ )
Gives us the result: —>=758%x107

rE—

Therefore the power loss is 0.758 %

ExOUNIALTS ConamperV:

This question was still a little too easy but it did encourage people not to bin this section of
the course. Not many got the final section right but there were a few solid attempts to put
together the loss and bending ratio...
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