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1. (a) For & = f(z):
i. An equilibrium point z¢ is a state such that f(zo) = 0.

ii. If S is a set, such that z(t) € S = z(t+ 7) € S for every 7 > 0 then S is an invariant set. (Also
sometimes called a ‘positively invariant set’.)

(b) LaSalle’s Theorem: Let S C ®" be a compact invariant set. Assuine there exists a differentiable
function V' : § — R such that .
Vi) <0VzeS

Let M be the largest invariant set contained in {z € S | V(z) = 0} (the set of z € § for which
V() = 0). Then all trajectories starting in S approach M as t — co.

Corollary: If the set {z € § | V(x) = 0} contains no trajectories other than z:(t) = 0, then 0 is locally
asymptotically stable. Moreover, all trajectories starting in S converge to 0.

When using Lyapunov’s theorems to establish asymptotic stability of an equilibrium z = 0, it is
necessary to show that V(z) = 0 at = 0 only. In many practical examples this is not true but
the conditions of LaSalle’s theorem, which are weaker, are satisfied. LaSalle’s Theorem can also be
applied to establish convergence to more general invariant sets, such as limit cycles.

(¢) i At an equilibrium point £; = 0, hence 2 = 0 from the first state equation. Therefore at an
equilibrium % = — f(0) — g(#1) = 0, from the second state equation. But f(0) = 0, hence we
must have g(z1) = 0, and hence %; = 0 from the properties of g.

ii. The given function V(z1, zg) satisfies the following properties:

V(0,0) = 0 by inspection, ‘ )
V(z1,z2) > Ofor (z1,z2) # (0,0),|z1] < 00 and |z2| < gy, siice (2)
Ty
either 22>0 or / g(a)do >0, (3)
0
the latter following from the fact that og(c) > 0 for ¢ £ 0. (4)
V{zy, z2) is continuous in z; and z». (5)

Henee V(zy, z2) is a Lyapunov function candidate.
Along trajectories of the system we have

V=A@ = [ o) w2 ]| i o | = et <0 ©)

Hence z = 0 is a stable equilibrium point, by Lyapunov’s Theorem.

However, V = 0 whenever z = 0, even if 21 # 0, so asymptotic stability cannot be proved by
Lyapunov’s theorems.

Consider the set S = {(z1,22) : V(1,22) < Vo, lz1] < 00, |22| < 00}, where Vg > 0 is some
value. This set is invariant, since V < 0. It is also compact (ie closed and bounded). So, by
LaSalle’s Theorem, all trajectories which start in or enter this set approach the largest invariant
set within it for which V = 0.

But V = 0 = x5 = 0; for this to remain true along a trajectory requires that both z; = const
(since £1 = z2) and &2 = 0. As in part 1(c)i, this implies that 2; = 0. Thus the only invariant set
within S for which V = 0 is the point (21, 22) = (0, 0), so by the corollary to LaSalle’s Theorem
this point is asymptotically stable.

Quite a tricky question on the stability of a mass on a nonlinear spring,
with some subtleties. Popular and well answered, with the majority of
students using LaSalle correctly.
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2.

(a)

(b)

Suppose that, for a signal e(t), we have e(t) = E sin(wt). If this is the input to the nonlinearity fi(e) =
e3 the its output is E3sin®(wt). To find the describing function we need to find the fundamental
(first harmonic) Fourier component of this.

Using the given formula, sin®# = (3sin 6 — sin36) /4.

Hence 73
E3sin®(wt) = ~ [Bsin(wt) - sin(3wt)] (7)
so the fundamental component is 3E3 sin(wt)/4. Thus we have the describing function
3E® 3E?
E = ——= —
Ny =2 =2 ®

The describing function predicts limit cycles when the Nyquist plot intersects the plot of —1/N(E).
In this case the plot of —1/N(E) lies on the negative real line, starting at —oo for £ = 0, and
increasing monotonically to 0 at E = co. It intersects the given Nyquist plot at the w = 0 point, and
at the point where the Nyquist plot crosses the negative real line. (Not at the origin, because neither
plot quite gets there for finite E and w.) The w = 0 point does not indicate a limit cycle, since the
frequency is 0. '

Now we investigate the limit cycle indicated by the intersection at w # 0:

Frequency: This is the frequency at which Im G(jw) = 0. Since the numerator of G(jw) is real, it
is enough to look at the denominator d(jw):

d(jw) = (jw — 1) (jw + 5)% = (jw — 1)(—w? + 10jw + 25) 9)
hence
Imd(jw) = w(—w?+25)—10w (10)
= —w(w?~15) (11)
= 0 for w=0andw=15 (12)

so a limit cycle exists with frequency w = v/15.
Amplitude: At the point of intersection we have

k k

k
ICUVISI = =5 25) ~ Tx 40 160 (13)
Hence at the intersection we have
1 4 k
=—— (14)

TN(E) T 3EZ 160
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Figure 1: Plot of —1/N(E) for Q.2b

4 160 10
E=y3x% =85 (15)

Thus a limit cycle is predicted to exist with frequency /15 and amplitude (at the input to the
nonlinearity) of 84/10/3k.

Howewver: This limit cycle is unstable, by the following argument. If the limit cycle amplitude E
increases, then the point —1/N(E) moves to the right of the point of intersection of the two plots.
Considering this point as the “—1/gain” point of the Nyquist stability criterion predicts an unstable
closed loop (because G(s) is unstable), hence the amplitude may be expected to increase further. If
the amplitude decreases slightly then a stable closed loop is predicted (the Nyquist locus encircles
the point —1/N(FE) once counter- clockwise, if negative frequencies are included, and G(s) has one
pole) so the amplitude may be expected to decrease further.

Thus the limit cycle is very unlikely to be sustained for any length of time, and may not be observed
at all.

(c) The input-output characteristic of the nonlinearity f» is shown in Fig.2. Note that the ‘gain’ 1/(1 +
le]) + 1 decreases monotonically with E, from 2 (when |e] = 0) to 1 (when |e| = 00). Therefore N(E)

and hence



for this nonlinearity will decrease with E, also from 2 to 1 (considering the describing function as an
‘equivalent gain’). Hence —1/N(E) will decrease from —1/2 to —1 — that is, the plot evolves in the
opposite direction to that in part (b). The relative directions of intersection of G(jw) and —1/N(E)
will therefore also be opposite, and by the same argument as above, any predicted limit cycle will be
stable.

Such a limit cycle will be predicted if 1/2 < |G(jv/15)| < 1 (so that there is an intersection with the
—1/N(E) plot), namely if 1/2 < 3£ < 1, or 80 < k < 160. However the amplitude of the limit cycle
cannot be predicted without further calculation. The frequency remains at V15.

fz(e)A

YO

Figure 2: Input-output characteristic of fa(e) for Q.2c

(d) The Circle Criterion: Suppose the nonlinearity in Fig.2 of the question is a sector nonlinearity in
the sector (, 8). Consider the circle which has the line segment {—1/8, —1/a| as diameter. The
feedback system is asymptotically stable if the Nyquist locus of G(jw) (plotted for —0o < w < +00)
encircles this circle as many times counter-clockwise as G(s) has unstable poles.

In this case G(s) has one unstable pole. Therefore one counter-clockwise encirclement is required to
guarantee asymptotic stability.

In the case of fi(e) (part (b)), we have a = 0 and 8 = 00, so the whole negative real line would need
to be encircled. Clearly this is impossible {cf Fig.1 of the question) for any value of k. So the circle
criterion is not applicable to this problem.

In the case of fa(e) (part (c)), we have & = 1 and 8 = 2. Thus the circle whose diameter is the
segment [—1,—1/2] of the real line would need to be encircled. This is possible if k > 25 (so that
G(0) < —1) and k < 80 (so that G(j/15) > —1/2). The Nyquist plot shown in the question shows
that the encirclement condition is satisfied for £ = 30, so there is a range of values of k in the
neighbourhood of 30 for which asymptotic stability of the closed loop can be deduced.
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Figure 3: Plot of —1/N(F) for Q.2¢
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Figure 4: Encirclement of the circle with diameter [—1,—1/2], for Q.2d.

Another popular question. The Fourier analysis to find the describipg
function in part a) was fine, but many students got lost in the details of

b) and found the more general parts c¢) and d) too hard.’
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Less popular question, but well answered - causing few problems.
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Unpopular question. Straightforward if you understood what the question was
asking, but most candidates didn't.

~R -



