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Module 4F7 - Digital Filters and Spectrum Estimation
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Question 1

Aunswers:

a) The desired response is a delayed version of the plant’s input. In some
instances a delay is not necessary.
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h* = h* + R} (p — Rh*)
h* —_ R—lp
c) Let v(n) = h(n) — h*. Thus
h(n) —h* = h(n — 1) — h* + p)R™'(Rh* — Rh(n — 1))
v(n)=v(n—-1)—pv(n—1)
=1 -pvn-1)

|1 — p| < 1 guarantees convergence. Optimal p = 1 as it would result in

convergence in one step.
d) The modification of the LMS is

h(n) = h(n — 1) + pR(n) "u(n)(d(n) — u(n)"h(n - 1))
1
R(n) = n—:L_—IR(n — 1) + —u(m)u(n)*
and R(0) = e, e a very small positive constant, to ensure invertibility.
From the study of v(n) = h(n) — h* above we see that this algorithm will
be insensitive to the eigenvalue spread of R whereas the LMS is sensitive.
e) For the slowly time varying statistics, use

R(n) = AR(n — 1) + u(n)u(n)”

where 0 < A < 1. Thus we have the recursive least squares algorithm



Comments: This was a very popular question. The application to inverse
modeling was answered well by most although some gave the block diagram for
identification instead. Part (b) on the limit point as well easily solved. For part
(c), some failed to see that convergence is in one iteration when the step-size
equals to 1. Part (d) proved challenging for many — in the modified LMS a
better answer would have been to use the sample average of the autocorrelation
function and not the instantaneous estimate. Many failed to comment that
this new algorithm is less sensitive to the eigenvalue spread compared to the
LMS. For part (e), many failed to see that an exponentially weighted estimate
of the autocorrelation function would have been better than an instantaneous
estimate.

Question 2
Answers:

a) »
u(n) =au(n —1) +v(n) +bv(n—1)

Multiply both sides of this equation by u(n) and take the expectation. Do
the same with u(n — 1) and u(n — 2).
ro =ary + E{[v(n) + bv(n — 1)]u(n)}
r1 =arg + E {[v(n) + bv(n — )] u(n — 1)}
ro = ary + E{[v(n) + bv(n — 1)]u(n — 2)}

where
E{[v(n) +bv(n—1)]u(n —2)} =0
E{[v(n) +bv(n — 1)]u(n — 1)} = bo?
and
B {[o(n) + bu(n ~ D] u(n)}
= E{[v(n) +bv(n—1)]au(n—1) +v(n) +bv(n—1)]}
= abo2 4+ o2(1+b?)
b)

E {(d(n) —hTu(n))} = +h"TRh— 2h"p.
Differentiating with respect to h, the minimiser is h = R™!p or Rh = p. Thus

Jmin — 02 =hTRh — 2hTp

=—p" (R p
=-—p'R7'p

since (R™1)" = (RT) ' =R-1,



¢) Since we are predicting, d(n) = u(n).
For first order predictor, u(n) = u(n—1), R =rg, p = E{u(n—1)d(n)} = ry.
Thus
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For an order two predictor, u(n) = [u(n — 1),u(n — 2)]7,
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Now evaluate
o = ary + abol + oZ(1 + b?)

71 = arg + bo?

or
T1 1

=—=+=-+2

=5 g
2ri =719+ 2

T = 3, Ty = 4,

First order, Jmin = ro — 9/4, second order Jyin, = o — 18/7.

Second order does better because b # 0.

Comment: This was a very popular question. Part (a) was answered well
by most although many failed to properly account for the autocorrelation as
some cross terms were dismissed as having no contribution. Part (b) very well
answered. Part (c) was answered less well than expected. Errors in Part (a)
meant many failed to get the right answer. Some were unable to correctly apply
the solution of Part (b) to the calculation for the application to prediction.

Question 3

Answers:
a) A good discussion should include the following: the definition of the

periodogram, the expression for its expected value and its variance, and the
various improvements such as that of Bartlett, Blackman-Tukey and Welch,
including the trade-off they offer.

b) NSx(e?¥) is

2
N-1 —jwn
En.—_o Tneé

_ N—-1N-1 jw(m—mn)
- Zm:O n=0 TmTn€

N-2—m+1 egw(m—n) +rem

— 1 jw(0—n N-1 jw(N—-1-n)
= anoxomnej ( ) + Zn=N_2$N—lxne + Zm:l n=m—1TmZn



where rem denotes all other remaining terms. Note that rem has zero expecta-
tion. Taking the expectation gives

2
S
=(1+ce™ )+ (1 +ae’™) +(N-2)(1+ ae’® + oY)
=N+ (N — 1)(ae + ae™¥)

The true value is ) ‘ )
Sx(e?¥) = ae’™ + 1+ ae™¥.

So § 'x is biased for finite N but not for infinite N.

For

Tp = Wy + Wn_1,

Rxx[0] =1, Rxx[—1] = Rxx[1] = 0.5, other values of Rx x are zero. This
is a special case with a = 0.5.

Comments: Very popular question. Part (a) was answered well by most.
Part (b) should have been a simple expansion of the absolute value followed

by the application of the expectation operator but many could not execute it
properly. Again those who found Part (b) difficult performed poorly in Part

(c).
Question 4

Answers:
a) When stationary, zo will be a zero mean Gaussian.

E(z2) = E(a®22_; + w2 + 2axp—1wy)
=a’E(z},_,) + E(w})
Thus the variance is ¢2/(1 — a?).
The probability density of (zg,...,zn) is
p(zo) x [[ioyp(zilwi-1)
where p(z;|z;—1) is Gaussian with mean ax;—; and variance o2.
b) Including p(zg) will complicate the maximisation step. So maximise

p(x1,- .., ZnlTo) instead.
tog p(z1, - - nlo) i

1 -1 9
log——F —logo™ + —= > . (x; — azi—1)”
(27‘_)‘”/_ 20_22 _1( 1)

Fix o, differentiate w.r.t. a and set to zero to get

-1,
pzizl —2(z; —azi—1)xi—1 =0



or
o i1 ®iTin1
DTy
Use this value of a and solve for o:
—g + 0—132&1(% —@z;1)* =0
2_ lin ~ 2
0% =~ i (@i —azii)
c) We see that
Rxx[1]
Rxx[0]

a =
and

1
ot = > i Faczi — 2waTs

-7 Rex[l] 5 o Rxx[1]?
= Rxx[0] + ]/%XX[O]Z Rxx[0]—2 ]/%XX[O]
_B _ Rxx[1]?

) Rxx[0]

Which is the same as the Yule-Walker estimate. Here we have regarded both
n~iy " zZand nT1Y " 22 | as Rxx[0].
d) Write the AR(P) model in state-space form:

Tn 1
Xp=| : =Ax,_ 1+ 0 W
Zn—P+1 :
When stationary, p(zg,...,ZTp—1) is a Gaussian density with zero mean and

constant variance, say S. Computing the variance of both sides of the state-
space equation and equating them gives

S = ASAT + o2bb”

where b = [1,0,...,0]T. Now this equation can be solved for all the elements
of the square matrix S.

It is much simpler to maximise p(zp,...,Zn|%o,...,2p—1) Wwhen n is much
larger than P as there will be little loss of performance (statistical efficiency) in
doing so. Note that p(zp,...,zslzo,...,2p—1) can be easily written down and
maximised as was done for the AR(1) case.

Comments: Overwhelmingly the least popular question. Part (a) was an-
swered well via the probability chain rule. Part (b) was a simple least squares
calculation and was correctly done. Part (d) proved challenging although it
should have been an easy mark earner since all that was needed was a descrip-
tion of the procedure.






