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1 (a) (i) Taking the inverse FT of the ideal frequency response will give
an impulse response which does not have finite support – to remedy this we
multiply by a window function which forces the impulse response coefficients
to zero for (n1,n2) outside Rh, the desired support region. The actual
filter frequency response H(ω1,ω2) is then given by the convolution of the
desired frequency response Hd(ω1,ω2) with the window function spectrum
W (ω1,ω2).

This is exactly as we should expect since we multiply in the spatial
domain and must therefore convolve in the frequency domain.

Thus the effect of the window is to smooth Hd – clearly we would prefer
to have the mainlobe width of W (ω1,ω2) small so that Hd is changed as little
as possible. We also want sidebands of small amplitude so that the ripples in
the (ω1,ω2) plane outside the region of interest are kept small.

The two most popular methods of forming 2d windows from 1d
windows are

A. Taking the product of 1d windows:

w(u1,u2) = w1(u1) w2(u2)

B. Rotating a 1d window:

w(u1,u2) = w1(u)|u=
√
(u2

1+u2
2)

[15%]

(ii) You can do this either by direct Fourier transforming, or by using the
fact that the triangular pulse is the convolution of two rectangular pulses.

If doing it directly: first find the FT of w1

W1(ω1) =
∫ U1

−U1

(
1− |u1|

U1

)
e− jω1u1du1

=
∫ 0

−U1

(
1+

u1
U1

)
e− jω1u1du1 +

∫ U1

0

(
1− u1

U1

)
e− jω1u1du1

=
∫ U1

−U1
e− jω1u1du1 +

∫ U1

0
− u1

U1

[
e− jω1u1 + e jω1u1

]
du1

Which can be rewritten as

(cont.
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[
e− jω1u1

− jω1

]U1

−U1

−
∫ U1

0

u1
U1

2cos(ω1u1)du1

= 2U1sinc(ω1U1)−
2

U1

∫ U1

0
u1 cos(ω1u1)du1

Integrating the second term by parts then gives

2
U1

∫ U1

0
u1 cos(ω1u1)du1 =

2
U1

([
u1 sin(ω1u1)

ω1

]U1

0
−
∫ U1

0

sin(ω1u1)

ω1
du1

)

= 2U1sinc(ω1U1)+
2

ω1
2U1

[cos(ω1U1)−1]

The whole integral is therefore

2U1sinc(ω1U1)−2U1sinc(ω1U1)−
2

ω1
2U1

[cos(ω1U1)−1]

=
2

ω1
2U1

2sin2(ω1U1/2) =U1sinc2 ω1U1
2

.
Thus the total 2-D window function will be

W (ω1,ω2) =W (ω1)W (ω2) =U1U2sinc2 ω1U1
2

sinc2 ω2U2
2

Note: that one can get the above result fairly easily by taking the
standard result for the FT of a rectangular pulse (a sinc) and noting that since
the triangular pulse is the convolution of two rectangular pulses, the FT of the
triangular pulse must be the multiplication of the FT , ie a sinc2 – a bit of care
must be taken to get the correct factors. [30%]

(iii) Note that along the axes, the sinc2 function above has its first zeros
at ω1U1

2 = ±π and ω2U2
2 = ±π , ie at ωk = ±2π/Uk, and subsequent zeros

at multiples of these values. The mainlobe is therefore wider than a simple
rectangular window function, but the sidelobes decay at a much more rapid
rate.

Thus for a given ideal frequency response we know that the effect of
windowing is to convolve with the FT of the window function – thus the

(TURN OVER for continuation of SOLUTION 1
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freq response will be spread out more than for a rectangular window, but
the sidelobes will be much better. This will therefore give a relatively wide
transition band but a flat stop-band. [15%]

(b) (i) To find H we can use two approaches – either directly use the IFT
or use a combination of standard results (probably the most common choice).
Both approaches are given below:

Direct IFT
Can first of all do this via straightforward FTs. Firstly we can write the
frequency response as

H(ω1,ω2) = H0−H1H2

where

H0(ω1,ω2) =

1 if |ω1|< ΩU and |ω2|< ΩU

0 otherwise

H1(ω1,ω2) =

1 if ΩL < |ω1|< ΩU

0 otherwise

H2(ω1,ω2) =

1 if ΩL < |ω2|< ΩU

0 otherwise

Taking the IFT of H(ω1,ω2) gives us

h(n1,n2) =
∆1∆2
(2π)2

∫
π/∆2

−π/∆2

∫
π/∆1

−π/∆1
[H0−H1H2]e

j(ω1n1∆1+ω2n2∆2) dω1 dω2

=
∆1∆2
(2π)2

∫
ΩU

−ΩU

∫
ΩU

−ΩU
e j(ω1n1∆1+ω2n2∆2) dω2 dω1

− ∆1∆2
(2π)2

[∫ −ΩL

−ΩU
e jω1n1∆1dω1 +

∫
ΩU

ΩL
e jω1n1∆1dω1

]
×

[∫ −ΩL

−ΩU
e jω2n2∆2dω2 +

∫
ΩU

ΩL
e jω2n2∆2dω2

]
Evaluating these integrals gives

(cont.
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∆1∆2
(2π)2


[

e jω1n1∆1

jn1∆1

]ΩU

−ΩU

[
e jω2n2∆2

jn2∆2

]ΩU

−ΩU


− ∆1∆2
(2π)2


[e jω1n1∆1

jn1∆1

]−ΩL

−ΩU

+

[
e jω1n1∆1

jn1∆1

]ΩU

ΩL

[e jω2n2∆2

jn2∆2

]−ΩL

−ΩU

+

[
e jω2n2∆2

jn2∆2

]ΩU

ΩL


=

∆1∆2
(2π)2 {2ΩU 2ΩU sinc(n1∆1ΩU )sinc(n2∆2ΩU )}

− ∆1∆2
(2π)2 [2ΩU sinc(n1∆1ΩU )−2ΩL1sinc(n1∆1ΩL)]×

[2ΩU sinc(n2∆2ΩU )−2ΩLsinc(n2∆2ΩL)]

=
∆1∆2
(π)2 {ΩU ΩLsinc(n1∆1ΩU )sinc(n2∆2ΩL)+

ΩLΩU sinc(n1∆1ΩL)sinc(n2∆2ΩU )−ΩLΩLsinc(n1∆1ΩL)sinc(n2∆2ΩL)}

Using combinations of standard results
It is also possible to arrive at the above by using the standard results for a
rectangular lowpass and bandpass filters.

Standard result for a lowpass filter (H0) is:

h(n1∆1,n2∆2) =
∆1∆2

π2 [ΩU
2 sinc(ΩU n2∆2)sinc(ΩU n1∆1)]

Standard result for a separable bandpass filter (H1H2) is

h(n1∆1,n2∆2) =

∆1∆2
π2 [ΩU sinc(ΩU n1∆1)−ΩLsinc(ΩLn1∆1)] [ΩU sinc(ΩU n2∆2)−ΩLsinc(ΩLn2∆2)]

Thus, as our filter can be formed from H0−H1H2, our impulse response is:

=
∆1∆2

π2

[
ΩU

2 sinc(ΩU n2∆2)sinc(ΩU n1∆1)− [ΩU sinc(ΩU n1∆1)−ΩLsinc(ΩLn1∆1)]×

[ΩU2sinc(ΩU n2∆2)−ΩL2sinc(ΩLn2∆2)]]

which simplifies to give the same expression as above.

(TURN OVER for continuation of SOLUTION 1
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As well as taking (H0 −H1H2) we can also treat the shaded region
as the sum of lowpass filters (|ω1| < ΩU and |ω2| < ΩL), (|ω1| < ΩL and
|ω2| < ΩU ) minus another lowpass filter (|ω1| < ΩL and |ω2| < ΩL) etc.
(giving the same form as the direct IFT).

From the above results we see that if ΩU = ΩL our expression for h
reduces to

∆1∆2
π2

[
ΩU

2sinc(ΩU n1∆1)sinc(ΩU n2∆2)
]

which is indeed the h of a square lowpass filter with side ΩU .
[30%]

(ii) If we consider the value of h on the u1 axis, where n2 = 0, we see that
the expression reduces to:

∆1∆2
π2 [ΩLΩU sinc(ΩU n1∆1)+ΩL(ΩU −ΩL)sinc(ΩLn1∆1)]

Similarly, along the u2 axis we have:

∆1∆2
π2 [ΩLΩU sinc(ΩU n2∆2)+ΩL(ΩU −ΩL)sinc(ΩLn2∆2)]

Thus, along the axes we will get the sum of two sincs, which will give
sinc-like behaviour.

However, if we look at what happens on the diagonals (u1 = u2), we
see that we will get sinc2 behaviour, so that the sidelobes are smaller and
decay more rapidly. The sketch below indicates the behaviour of the impulse
response.

[10%]

2 (a) Our observed image, y, is modelled as a linear distortion, L, of the true image,
x, plus additive noise, d, i.e. y = Lx+d.

(i) If we have access to the imaging system and to a range of sources to
image, we can image something resembling (as much as possible) a point
source. The resulting image can then be taken as our estimate of L (also
known as the point spread function – this of course neglects the noise, but
nevertheless is used. In microscopy, special point source beads are used to
estimate the point spread function (L). [10%]

(cont.
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Fig. 1

(ii) If we neglect noise we can write y = Lx+d in discrete form as

y(n1,n2) = ∑
m1

∑
m2

L(m1,m2)x(n1−m1,n2−m2)

Since the relationship between x and y is a 2-D convolution, a
straightforward approach to the problem of reconstruction is to take the
Fourier transform of each side of the above to give:

Y (ω1,ω2) = L (ω1,ω2)X(ω1,ω2)

where:

L (ω1,ω2) =
∞

∑
n2=−∞

∞

∑
n1=−∞

L(n1,n2)e
− j(ω1n1+ω2n2)

∴ X(ω1,ω2) =
Y (ω1,ω2)

L (ω1,ω2)

and

x(n1,n2) =
1

(2π)2

∫
π

−π

∫
π

−π

X(ω1,ω2)e
j(ω1n1+ω2n2)dω1dω2

Thus, if we neglect noise and know the psf, L, we can estimate our
true image by a process known as inverse filtering, which, as we see above,
involves dividing the fourier transform of the observed image by the fourier
transform of L – the inverse filter is therefore 1/L .

(TURN OVER for continuation of SOLUTION 2
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If the transfer function L (ω1,ω2) has zeros then the inverse filter,
1/L , will have infinite gain. i.e. when L (ω1,ω2) is very small,
1/L (ω1,ω2) is very large (or indeed infinite if there are zeros) and therefore,
small noise in the regions of the frequency plane where 1/L (ω1,ω2) is
very large, can be hugely amplified. In practice a method of lessening this
sensitivity to noise is to threshold the frequency response, leading to the so-
called, pseudo-inverse or generalised inverse filter Lg(ω1,ω2). This is given
by

Lg(ω1,ω2) =


1

L (ω1,ω2)
1

|L (ω1,ω2|
< γ

0 otherwise
(1)

or

Lg(ω1,ω2) =


1

L (ω1,ω2)
1

|L (ω1,ω2|
< γ

γ
|L (ω1,ω2|
L (ω1,ω2)

otherwise
(2)

Clearly for 1
|L (ω1,ω2|

≥ γ in equation 2, the modulus of the filter is set as γ ,
whereas in equation 1 it is set as 0. [20%]

(iii) In the Bayesian derivation of the Wiener filter we assume, for simplicity,
that E[x] = 0 and E[d] = 0, i.e. that both the signal and the noise are zero
mean. To find an estimate of x, we maximise P(x|y), i.e. the probability of
the original image given the observed data. We form this posterior vis Bayes
which tells us that P(x|y) ∝ P(y|x)P(x) , with

P(y|x) ∝ e−
1
2 dT N−1d = e−

1
2 (y−Lx)T N−1(y−Lx)

Here we have assumed that the noise is gaussian distributed with covariance
matrix N = E[ddT ] so that the dT N−1d term is the vector equivalent of the
1

σ2 term in the 1d gaussian – if N is diagonal then N−1 will be diagonal with

elements 1
σi2

.

The prior probability P(x) incorporates any prior knowledge we may
have about the distribution of the data and we assume an ideal world in which
x is a gaussian random variable, described by a known covariance matrix
C = E[xxT ] (including all cross-correlations etc.) so that

P(x) ∝ e−
1
2xTC−1x

(cont.
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An alternative image deconvolution algorithm is known as Maximum
Entropy deconvolution, again assuming Gaussian noise, the likelihood would
be as for the Wiener filter above but the prior is an entropic prior which takes
the form

P(x) ∝ eαS

where one version of the entropy S (sometimes known as the cross entropy)
of the image is given by

S(x,m) = ∑
i

[
xi−mi− xi ln

(
xi
mi

)]
where m is the measure on an image space (the model) to which the image
x defaults in the absence of data. (Can see global maximum of S occurs at
x = m.)

Or – another alternative prior is the Pixon prior. This is harder to
describe as no real detail was given in the notes! However, marks will indeed
be given if anybody has read up on this and has managed to adequately
describe the prior used (in terms of assuming a distribution for the sizes of
the pixons).

[30%]

(b) Suppose the original image has size a1 in the u1 direction and size a2 in the
u2 direction. The sampling intervals in the u1 and u2 directions are therefore:

∆1 =
a1
m

∆2 =
a2
n

We know that the FT of a sampled image is the FT of the continuous image repeated
at intervals (in 2-D space) of the sampling frequencies. So, for our m×n sampled image,
the spectrum is repeated at intervals of

Ω1s =
2π

∆1
=

2πm
a1

and Ω2s =
2π

∆2
=

2πn
a2

Now, suppose we downsample by a factor of d1 in the u1 direction and by a factor
of d2 in the u2 direction, the new sampling intervals are then

∆
′
1 =

a1
(m/d1)

∆
′
2 =

a2
(n/d2)

so that the FT of this newly sampled image is repeated at sampling intervals of

(TURN OVER for continuation of SOLUTION 2
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Ω
′
1s =

2πm
a1d1

=
2π

∆1d1
and Ω

′
2s =

2πn
a2d2

=
2π

∆2d2

Thus, for no aliasing in the resampled image we need

Ω
′
1s > 2Ω1 and Ω

′
2s > 2Ω2

Which means that

d1 <
πm

a1Ω1
≡ π

∆1Ω1
and d2 <

πn
a2Ω2

≡ π

∆2Ω2

So, we obtain the minimum size of the image (to avoid aliasing) as

x1 = m/d1 =
a1Ω1

π
and x2 = n/d2 =

a2Ω2
π

Since we need integer values, (mmin,nmin) are given by rounding up x1 and x2. [30%]

If we do not sample sufficiently frequently, we will have aliasing which will occur
via frequencies from the repeated spectrum falling into the ’main’ spectrum. In many
cases we will get aliased frequencies which will then lie very close to each other in the
frequency domain. With two close frequencies, the effect will be to produce artefacts at
the sum and difference of the two frequencies – it is generally the difference frequency
which will then manifest itself as ringing/beating (ie moire fringe effects) artefacts in the
aliased image.

[10%]

3 (a) Consider an (n× n) block of image pixels denoted by the matrix X . If we
multiply X on the left by the DCT matrix T , we produce another (n×n) matrix, Y

Y = T X

It is easy to see that the i jth element of Y , Yi j is given by

Yi j = ti ·x j

where ti is the ith row of T and x j is the jth column of X . We can see therefore
that if yi is the ith column of Y then

(cont.
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T xi = yi

is the 1D DCT of xi (yi) j = t j ·xi).

Thus, the columns of Y give the 1D DCTs of the columns of X .

Similarly, we can see that if we take W = XT T , then the i jth element of W is x′i · t j

where x′i is the ith row of X . Thus, the rows of W give the 1-D DCT of the rows of X .

It is therefore clear that T XT T will first form the 1-D DCT of the columns of X ,
and then take the 1-D DCT of the rows of T X – thus performing a 2-D DCT transform
(operation is separable). [20%]

END OF SOLUTIONS






















