Solutions: 4F8 2011

ENGINEERING TRIPOS PART IIB

Thursday 12 May 20112.30 to 4.00

Module 4F8
IMAGE PROCESSING AND IMAGE CODING
(a) (i) Taking the inverse FT of the ideal frequency response will give an impulse response which does not have finite support - to remedy this we multiply by a window function which forces the impulse response coefficients to zero for $\left(n_{1}, n_{2}\right)$ outside R_{h}, the desired support region. The actual filter frequency response $H\left(\omega_{1}, \omega_{2}\right)$ is then given by the convolution of the desired frequency response $H_{d}\left(\omega_{1}, \omega_{2}\right)$ with the window function spectrum $W\left(\omega_{1}, \omega_{2}\right)$.

This is exactly as we should expect since we multiply in the spatial domain and must therefore convolve in the frequency domain.

Thus the effect of the window is to smooth H_{d}-clearly we would prefer to have the mainlobe width of $W\left(\omega_{1}, \omega_{2}\right)$ small so that H_{d} is changed as little as possible. We also want sidebands of small amplitude so that the ripples in the $\left(\omega_{1}, \omega_{2}\right)$ plane outside the region of interest are kept small.

The two most popular methods of forming 2d windows from 1d windows are
A. Taking the product of 1 d windows:

$$
w\left(u_{1}, u_{2}\right)=w_{1}\left(u_{1}\right) w_{2}\left(u_{2}\right)
$$

B. Rotating a 1 d window:

$$
w\left(u_{1}, u_{2}\right)=\left.w_{1}(u)\right|_{\left.u=\sqrt{(} u_{1}^{2}+u_{2}^{2}\right)}
$$

(ii) You can do this either by direct Fourier transforming, or by using the fact that the triangular pulse is the convolution of two rectangular pulses.

If doing it directly: first find the FT of w_{1}

$$
\begin{gathered}
W_{1}\left(\omega_{1}\right)=\int_{-U_{1}}^{U_{1}}\left(1-\frac{\left|u_{1}\right|}{U_{1}}\right) \mathrm{e}^{-j \omega_{1} u_{1}} d u_{1} \\
=\int_{-U_{1}}^{0}\left(1+\frac{u_{1}}{U_{1}}\right) \mathrm{e}^{-j \omega_{1} u_{1}} d u_{1}+\int_{0}^{U_{1}}\left(1-\frac{u_{1}}{U_{1}}\right) \mathrm{e}^{-j \omega_{1} u_{1}} d u_{1} \\
=\int_{-U_{1}}^{U_{1}} \mathrm{e}^{-j \omega_{1} u_{1}} d u_{1}+\int_{0}^{U_{1}}-\frac{u_{1}}{U_{1}}\left[\mathrm{e}^{-j \omega_{1} u_{1}}+\mathrm{e}^{j \omega_{1} u_{1}}\right] d u_{1}
\end{gathered}
$$

Which can be rewritten as

$$
\begin{aligned}
& {\left[\frac{\mathrm{e}^{-j \omega_{1} u_{1}}}{-j \omega_{1}}\right]_{-U_{1}}^{U_{1}}-\int_{0}^{U_{1}} \frac{u_{1}}{U_{1}} 2 \cos \left(\omega_{1} u_{1}\right) d u_{1} } \\
= & 2 U_{1} \operatorname{sinc}\left(\omega_{1} U_{1}\right)-\frac{2}{U_{1}} \int_{0}^{U_{1}} u_{1} \cos \left(\omega_{1} u_{1}\right) d u_{1}
\end{aligned}
$$

Integrating the second term by parts then gives

$$
\begin{gathered}
\frac{2}{U_{1}} \int_{0}^{U_{1}} u_{1} \cos \left(\omega_{1} u_{1}\right) d u_{1}=\frac{2}{U_{1}}\left(\left[\frac{u_{1} \sin \left(\omega_{1} u_{1}\right)}{\omega_{1}}\right]_{0}^{U_{1}}-\int_{0}^{U_{1}} \frac{\sin \left(\omega_{1} u_{1}\right)}{\omega_{1}} d u_{1}\right) \\
=2 U_{1} \operatorname{sinc}\left(\omega_{1} U_{1}\right)+\frac{2}{\omega_{1}^{2} U_{1}}\left[\cos \left(\omega_{1} U_{1}\right)-1\right]
\end{gathered}
$$

The whole integral is therefore

$$
\begin{gathered}
2 U_{1} \operatorname{sinc}\left(\omega_{1} U_{1}\right)-2 U_{1} \operatorname{sinc}\left(\omega_{1} U_{1}\right)-\frac{2}{\omega_{1}^{2} U_{1}}\left[\cos \left(\omega_{1} U_{1}\right)-1\right] \\
=\frac{2}{\omega_{1}^{2} U_{1}} 2 \sin ^{2}\left(\omega_{1} U_{1} / 2\right)=U_{1} \operatorname{sinc}^{2} \frac{\omega_{1} U_{1}}{2}
\end{gathered}
$$

Thus the total 2-D window function will be

$$
W\left(\omega_{1}, \omega_{2}\right)=W\left(\omega_{1}\right) W\left(\omega_{2}\right)=U_{1} U_{2} \operatorname{sinc}^{2} \frac{\omega_{1} U_{1}}{2} \operatorname{sinc}^{2} \frac{\omega_{2} U_{2}}{2}
$$

Note: that one can get the above result fairly easily by taking the standard result for the FT of a rectangular pulse (a sinc) and noting that since the triangular pulse is the convolution of two rectangular pulses, the FT of the triangular pulse must be the multiplication of the FT , ie a sinc^{2} - a bit of care must be taken to get the correct factors.
(iii) Note that along the axes, the sinc^{2} function above has its first zeros at $\frac{\omega_{1} U_{1}}{2}= \pm \pi$ and $\frac{\omega_{2} U_{2}}{2}= \pm \pi$, ie at $\omega_{k}= \pm 2 \pi / U_{k}$, and subsequent zeros at multiples of these values. The mainlobe is therefore wider than a simple rectangular window function, but the sidelobes decay at a much more rapid rate.

Thus for a given ideal frequency response we know that the effect of windowing is to convolve with the FT of the window function - thus the
freq response will be spread out more than for a rectangular window, but the sidelobes will be much better. This will therefore give a relatively wide transition band but a flat stop-band.
(b) (i) To find H we can use two approaches - either directly use the IFT or use a combination of standard results (probably the most common choice). Both approaches are given below:

Direct IFT

Can first of all do this via straightforward FTs. Firstly we can write the frequency response as

$$
H\left(\omega_{1}, \omega_{2}\right)=H_{0}-H_{1} H_{2}
$$

where

$$
\begin{aligned}
& H_{0}\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \text { if }\left|\omega_{1}\right|<\Omega_{U} \text { and }\left|\omega_{2}\right|<\Omega_{U} \\
0 & \text { otherwise }\end{cases} \\
& H_{1}\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \text { if } \Omega_{L}<\left|\omega_{1}\right|<\Omega_{U} \\
0 & \text { otherwise }\end{cases} \\
& H_{2}\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \text { if } \Omega_{L}<\left|\omega_{2}\right|<\Omega_{U} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Taking the IFT of $H\left(\omega_{1}, \omega_{2}\right)$ gives us

$$
\begin{aligned}
h\left(n_{1}, n_{2}\right)= & \frac{\Delta_{1} \Delta_{2}}{(2 \pi)^{2}} \int_{-\pi / \Delta_{2}}^{\pi / \Delta_{2}} \int_{-\pi / \Delta_{1}}^{\pi / \Delta_{1}}\left[H_{0}-H_{1} H_{2}\right] e^{j\left(\omega_{1} n_{1} \Delta_{1}+\omega_{2} n_{2} \Delta_{2}\right)} d \omega_{1} d \omega_{2} \\
= & \frac{\Delta_{1} \Delta_{2}}{(2 \pi)^{2}} \int_{-\Omega_{U}}^{\Omega_{U}} \int_{-\Omega_{U}}^{\Omega_{U}} e^{j\left(\omega_{1} n_{1} \Delta_{1}+\omega_{2} n_{2} \Delta_{2}\right)} d \omega_{2} d \omega_{1} \\
- & \frac{\Delta_{1} \Delta_{2}}{(2 \pi)^{2}}\left[\int_{-\Omega_{U}}^{-\Omega_{L}} e^{j \omega_{1} n_{1} \Delta_{1}} d \omega_{1}+\int_{\Omega_{L}}^{\Omega_{U}} e^{j \omega_{1} n_{1} \Delta_{1}} d \omega_{1}\right] \times \\
& {\left[\int_{-\Omega_{U}}^{-\Omega_{L}} e^{j \omega_{2} n_{2} \Delta_{2}} d \omega_{2}+\int_{\Omega_{L}}^{\Omega_{U}} e^{j \omega_{2} n_{2} \Delta_{2}} d \omega_{2}\right] }
\end{aligned}
$$

Evaluating these integrals gives

$$
\begin{gathered}
\frac{\Delta_{1} \Delta_{2}}{(2 \pi)^{2}}\left\{\left[\frac{e^{j \omega_{1} n_{1} \Delta_{1}}}{j n_{1} \Delta_{1}}\right]_{-\Omega_{U}}^{\Omega_{U}}\left[\frac{e^{j \omega_{2} n_{2} \Delta_{2}}}{j n_{2} \Delta_{2}}\right]_{-\Omega_{U}}^{\Omega_{U}}\right\} \\
-\frac{\Delta_{1} \Delta_{2}}{(2 \pi)^{2}}\left\{\left[\left[\frac{e^{j \omega_{1} n_{1} \Delta_{1}}}{j n_{1} \Delta_{1}}\right]_{-\Omega_{U}}^{-\Omega_{L}}+\left[\frac{e^{j \omega_{1} n_{1} \Delta_{1}}}{j n_{1} \Delta_{1}}\right]_{\Omega_{L}}^{\Omega_{U}}\right]\left[\left[\frac{e^{j \omega_{2} n_{2} \Delta_{2}}}{j n_{2} \Delta_{2}}\right]_{-\Omega_{U}}^{-\Omega_{L}}+\left[\frac{e^{j \omega_{2} n_{2} \Delta_{2}}}{j n_{2} \Delta_{2}}\right]_{\Omega_{L}}^{\Omega_{U}}\right]\right\} \\
=\frac{\Delta_{1} \Delta_{2}}{(2 \pi)^{2}}\left\{2 \Omega_{U} 2 \Omega_{U} \operatorname{sinc}\left(n_{1} \Delta_{1} \Omega_{U}\right) \operatorname{sinc}\left(n_{2} \Delta_{2} \Omega_{U}\right)\right\} \\
-\frac{\Delta_{1} \Delta_{2}}{(2 \pi)^{2}}\left[2 \Omega_{U} \operatorname{sinc}\left(n_{1} \Delta_{1} \Omega_{U}\right)-2 \Omega_{L 1} \operatorname{sinc}\left(n_{1} \Delta_{1} \Omega_{L}\right)\right] \times \\
{\left[2 \Omega_{U} \operatorname{sinc}\left(n_{2} \Delta_{2} \Omega_{U}\right)-2 \Omega_{L} \operatorname{sinc}\left(n_{2} \Delta_{2} \Omega_{L}\right)\right]} \\
=\frac{\Delta_{1} \Delta_{2}}{(\pi)^{2}}\left\{\Omega_{U} \Omega_{L} \operatorname{sinc}\left(n_{1} \Delta_{1} \Omega_{U}\right) \operatorname{sinc}\left(n_{2} \Delta_{2} \Omega_{L}\right)+\right. \\
\left.\Omega_{L} \Omega_{U} \operatorname{sinc}\left(n_{1} \Delta_{1} \Omega_{L}\right) \operatorname{sinc}\left(n_{2} \Delta_{2} \Omega_{U}\right)-\Omega_{L} \Omega_{L} \operatorname{sinc}\left(n_{1} \Delta_{1} \Omega_{L}\right) \operatorname{sinc}\left(n_{2} \Delta_{2} \Omega_{L}\right)\right\}
\end{gathered}
$$

Using combinations of standard results

It is also possible to arrive at the above by using the standard results for a rectangular lowpass and bandpass filters.

Standard result for a lowpass filter $\left(H_{0}\right)$ is:

$$
h\left(n_{1} \Delta_{1}, n_{2} \Delta_{2}\right)=\frac{\Delta_{1} \Delta_{2}}{\pi^{2}}\left[\Omega_{U}^{2} \operatorname{sinc}\left(\Omega_{U} n_{2} \Delta_{2}\right) \operatorname{sinc}\left(\Omega_{U} n_{1} \Delta_{1}\right)\right]
$$

Standard result for a separable bandpass filter $\left(H_{1} H_{2}\right)$ is

$$
\begin{gathered}
h\left(n_{1} \Delta_{1}, n_{2} \Delta_{2}\right)= \\
\frac{\Delta_{1} \Delta_{2}}{\pi^{2}}\left[\Omega_{U} \operatorname{sinc}\left(\Omega_{U} n_{1} \Delta_{1}\right)-\Omega_{L} \operatorname{sinc}\left(\Omega_{L} n_{1} \Delta_{1}\right)\right]\left[\Omega_{U} \operatorname{sinc}\left(\Omega_{U} n_{2} \Delta_{2}\right)-\Omega_{L} \operatorname{sinc}\left(\Omega_{L} n_{2} \Delta_{2}\right)\right]
\end{gathered}
$$

Thus, as our filter can be formed from $H_{0}-H_{1} H_{2}$, our impulse response is:

$$
\begin{gathered}
=\frac{\Delta_{1} \Delta_{2}}{\pi^{2}}\left[\Omega_{U}^{2} \operatorname{sinc}\left(\Omega_{U} n_{2} \Delta_{2}\right) \operatorname{sinc}\left(\Omega_{U} n_{1} \Delta_{1}\right)-\left[\Omega_{U} \operatorname{sinc}\left(\Omega_{U} n_{1} \Delta_{1}\right)-\Omega_{L} \operatorname{sinc}\left(\Omega_{L} n_{1} \Delta_{1}\right)\right] \times\right. \\
\left.\left[\Omega_{U 2} \operatorname{sinc}\left(\Omega_{U} n_{2} \Delta_{2}\right)-\Omega_{L 2} \operatorname{sinc}\left(\Omega_{L} n_{2} \Delta_{2}\right)\right]\right]
\end{gathered}
$$

which simplifies to give the same expression as above.
(TURN OVER for continuation of SOLUTION 1

As well as taking $\left(H_{0}-H_{1} H_{2}\right)$ we can also treat the shaded region as the sum of lowpass filters $\left(\left|\omega_{1}\right|<\Omega_{U}\right.$ and $\left.\left|\omega_{2}\right|<\Omega_{L}\right),\left(\left|\omega_{1}\right|<\Omega_{L}\right.$ and $\left|\omega_{2}\right|<\Omega_{U}$) minus another lowpass filter $\left(\left|\omega_{1}\right|<\Omega_{L}\right.$ and $\left.\left|\omega_{2}\right|<\Omega_{L}\right)$ etc. (giving the same form as the direct IFT).

From the above results we see that if $\Omega_{U}=\Omega_{L}$ our expression for h reduces to

$$
\frac{\Delta_{1} \Delta_{2}}{\pi^{2}}\left[\Omega_{U}^{2} \operatorname{sinc}\left(\Omega_{U} n_{1} \Delta_{1}\right) \operatorname{sinc}\left(\Omega_{U} n_{2} \Delta_{2}\right)\right]
$$

which is indeed the h of a square lowpass filter with side Ω_{U}.
(ii) If we consider the value of h on the u_{1} axis, where $n_{2}=0$, we see that the expression reduces to:

$$
\frac{\Delta_{1} \Delta_{2}}{\pi^{2}}\left[\Omega_{L} \Omega_{U} \operatorname{sinc}\left(\Omega_{U} n_{1} \Delta_{1}\right)+\Omega_{L}\left(\Omega_{U}-\Omega_{L}\right) \operatorname{sinc}\left(\Omega_{L} n_{1} \Delta_{1}\right)\right]
$$

Similarly, along the u_{2} axis we have:

$$
\frac{\Delta_{1} \Delta_{2}}{\pi^{2}}\left[\Omega_{L} \Omega_{U} \operatorname{sinc}\left(\Omega_{U} n_{2} \Delta_{2}\right)+\Omega_{L}\left(\Omega_{U}-\Omega_{L}\right) \operatorname{sinc}\left(\Omega_{L} n_{2} \Delta_{2}\right)\right]
$$

Thus, along the axes we will get the sum of two sincs, which will give sinc-like behaviour.

However, if we look at what happens on the diagonals $\left(u_{1}=u_{2}\right)$, we see that we will get sinc^{2} behaviour, so that the sidelobes are smaller and decay more rapidly. The sketch below indicates the behaviour of the impulse response.

2 (a) Our observed image, \mathbf{y}, is modelled as a linear distortion, L, of the true image, \mathbf{x}, plus additive noise, \mathbf{d}, i.e. $\mathbf{y}=L \mathbf{x}+\mathbf{d}$.
(i) If we have access to the imaging system and to a range of sources to image, we can image something resembling (as much as possible) a point source. The resulting image can then be taken as our estimate of L (also known as the point spread function - this of course neglects the noise, but nevertheless is used. In microscopy, special point source beads are used to estimate the point spread function (L).

Fig. 1
(ii) If we neglect noise we can write $\mathbf{y}=L \mathbf{x}+\mathbf{d}$ in discrete form as

$$
y\left(n_{1}, n_{2}\right)=\sum_{m_{1}} \sum_{m_{2}} L\left(m_{1}, m_{2}\right) x\left(n_{1}-m_{1}, n_{2}-m_{2}\right)
$$

Since the relationship between x and y is a 2-D convolution, a straightforward approach to the problem of reconstruction is to take the Fourier transform of each side of the above to give:

$$
Y\left(\omega_{1}, \omega_{2}\right)=\mathscr{L}\left(\omega_{1}, \omega_{2}\right) X\left(\omega_{1}, \omega_{2}\right)
$$

where:

$$
\begin{gathered}
\mathscr{L}\left(\omega_{1}, \omega_{2}\right)=\sum_{n_{2}=-\infty}^{\infty} \sum_{n_{1}=-\infty}^{\infty} L\left(n_{1}, n_{2}\right) e^{-j\left(\omega_{1} n_{1}+\omega_{2} n_{2}\right)} \\
\therefore X\left(\omega_{1}, \omega_{2}\right)=\frac{Y\left(\omega_{1}, \omega_{2}\right)}{\mathscr{L}\left(\omega_{1}, \omega_{2}\right)}
\end{gathered}
$$

and

$$
x\left(n_{1}, n_{2}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} X\left(\omega_{1}, \omega_{2}\right) e^{j\left(\omega_{1} n_{1}+\omega_{2} n_{2}\right)} d \omega_{1} d \omega_{2}
$$

Thus, if we neglect noise and know the psf, L, we can estimate our true image by a process known as inverse filtering, which, as we see above, involves dividing the fourier transform of the observed image by the fourier transform of L - the inverse filter is therefore $1 / \mathscr{L}$.
(TURN OVER for continuation of SOLUTION 2

If the transfer function $\mathscr{L}\left(\omega_{1}, \omega_{2}\right)$ has zeros then the inverse filter, $1 / \mathscr{L}$, will have infinite gain. i.e. when $\mathscr{L}\left(\omega_{1}, \omega_{2}\right)$ is very small, $1 / \mathscr{L}\left(\omega_{1}, \omega_{2}\right)$ is very large (or indeed infinite if there are zeros) and therefore, small noise in the regions of the frequency plane where $1 / \mathscr{L}\left(\omega_{1}, \omega_{2}\right)$ is very large, can be hugely amplified. In practice a method of lessening this sensitivity to noise is to threshold the frequency response, leading to the socalled, pseudo-inverse or generalised inverse filter $\mathscr{L}_{g}\left(\omega_{1}, \omega_{2}\right)$. This is given by

$$
\mathscr{L}_{g}\left(\omega_{1}, \omega_{2}\right)= \begin{cases}\frac{1}{\mathscr{L}\left(\omega_{1}, \omega_{2}\right)} & \frac{1}{\mid \mathscr{L}\left(\omega_{1}, \omega_{2} \mid\right.}<\gamma \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

or

$$
\mathscr{L}_{g}\left(\omega_{1}, \omega_{2}\right)= \begin{cases}\frac{1}{\mathscr{L}\left(\omega_{1}, \omega_{2}\right)} & \frac{1}{\mathscr{L}\left(\omega_{1}, \omega_{2} \mid\right.}<\gamma \tag{2}\\ \gamma \frac{\mathscr{L}\left(\omega_{1}, \omega_{2} \mid\right.}{\mathscr{L}\left(\omega_{1}, \omega_{2}\right)} & \text { otherwise }\end{cases}
$$

Clearly for $\frac{1}{\mid \mathscr{L}\left(\omega_{1}, \omega_{2} \mid\right.} \geq \gamma$ in equation 2 , the modulus of the filter is set as γ, whereas in equation 1 it is set as 0 .
(iii) In the Bayesian derivation of the Wiener filter we assume, for simplicity, that $E[\mathbf{x}]=0$ and $E[\mathbf{d}]=0$, i.e. that both the signal and the noise are zero mean. To find an estimate of \mathbf{x}, we maximise $P(\mathbf{x} \mid \mathbf{y})$, i.e. the probability of the original image given the observed data. We form this posterior vis Bayes which tells us that $P(\mathbf{x} \mid \mathbf{y}) \propto P(\mathbf{y} \mid \mathbf{x}) P(\mathbf{x})$, with

$$
P(\mathbf{y} \mid \mathbf{x}) \propto \mathrm{e}^{-\frac{1}{2} \mathbf{d}^{T} N^{-1} \mathbf{d}}=\mathrm{e}^{-\frac{1}{2}(\mathbf{y}-L \mathbf{x})^{T} N^{-1}(\mathbf{y}-L \mathbf{x})}
$$

Here we have assumed that the noise is gaussian distributed with covariance matrix $N=E\left[\mathbf{d d}^{T}\right]$ so that the $\mathbf{d}^{T} N^{-1} \mathbf{d}$ term is the vector equivalent of the $\frac{1}{\sigma^{2}}$ term in the 1 d gaussian - if N is diagonal then N^{-1} will be diagonal with elements $\frac{1}{\sigma_{i}^{2}}$.

The prior probability $P(\mathbf{x})$ incorporates any prior knowledge we may have about the distribution of the data and we assume an ideal world in which \mathbf{x} is a gaussian random variable, described by a known covariance matrix $C=E\left[\mathbf{x x}^{T}\right]$ (including all cross-correlations etc.) so that

$$
P(\mathbf{x}) \propto \mathrm{e}^{-\frac{1}{2} \mathbf{x}^{T} C^{-1} \mathbf{x}}
$$

An alternative image deconvolution algorithm is known as Maximum Entropy deconvolution, again assuming Gaussian noise, the likelihood would be as for the Wiener filter above but the prior is an entropic prior which takes the form

$$
P(\mathbf{x}) \propto \mathrm{e}^{\alpha S}
$$

where one version of the entropy S (sometimes known as the cross entropy) of the image is given by

$$
S(\mathbf{x}, \mathbf{m})=\sum_{i}\left[x_{i}-m_{i}-x_{i} \ln \left(\frac{x_{i}}{m_{i}}\right)\right]
$$

where \mathbf{m} is the measure on an image space (the model) to which the image \mathbf{x} defaults in the absence of data. (Can see global maximum of S occurs at $\mathbf{x}=\mathbf{m}$.)

Or - another alternative prior is the Pixon prior. This is harder to describe as no real detail was given in the notes! However, marks will indeed be given if anybody has read up on this and has managed to adequately describe the prior used (in terms of assuming a distribution for the sizes of the pixons).
(b) Suppose the original image has size a_{1} in the u_{1} direction and size a_{2} in the u_{2} direction. The sampling intervals in the u_{1} and u_{2} directions are therefore:

$$
\Delta_{1}=\frac{a_{1}}{m} \quad \Delta_{2}=\frac{a_{2}}{n}
$$

We know that the FT of a sampled image is the FT of the continuous image repeated at intervals (in 2-D space) of the sampling frequencies. So, for our $m \times n$ sampled image, the spectrum is repeated at intervals of

$$
\Omega_{1 s}=\frac{2 \pi}{\Delta_{1}}=\frac{2 \pi m}{a_{1}} \text { and } \Omega_{2 s}=\frac{2 \pi}{\Delta_{2}}=\frac{2 \pi n}{a_{2}}
$$

Now, suppose we downsample by a factor of d_{1} in the u_{1} direction and by a factor of d_{2} in the u_{2} direction, the new sampling intervals are then

$$
\Delta_{1}^{\prime}=\frac{a_{1}}{\left(m / d_{1}\right)} \quad \Delta_{2}^{\prime}=\frac{a_{2}}{\left(n / d_{2}\right)}
$$

so that the FT of this newly sampled image is repeated at sampling intervals of

$$
\Omega_{1 s}^{\prime}=\frac{2 \pi m}{a_{1} d_{1}}=\frac{2 \pi}{\Delta_{1} d_{1}} \text { and } \Omega_{2 s}^{\prime}=\frac{2 \pi n}{a_{2} d_{2}}=\frac{2 \pi}{\Delta_{2} d_{2}}
$$

Thus, for no aliasing in the resampled image we need

$$
\Omega_{1 s}^{\prime}>2 \Omega_{1} \text { and } \Omega_{2 s}^{\prime}>2 \Omega_{2}
$$

Which means that

$$
d_{1}<\frac{\pi m}{a_{1} \Omega_{1}} \equiv \frac{\pi}{\Delta_{1} \Omega_{1}} \text { and } d_{2}<\frac{\pi n}{a_{2} \Omega_{2}} \equiv \frac{\pi}{\Delta_{2} \Omega_{2}}
$$

So, we obtain the minimum size of the image (to avoid aliasing) as

$$
x_{1}=m / d_{1}=\frac{a_{1} \Omega_{1}}{\pi} \text { and } x_{2}=n / d_{2}=\frac{a_{2} \Omega_{2}}{\pi}
$$

Since we need integer values, $\left(m_{\min }, n_{\min }\right)$ are given by rounding up x_{1} and x_{2}.

If we do not sample sufficiently frequently, we will have aliasing which will occur via frequencies from the repeated spectrum falling into the 'main' spectrum. In many cases we will get aliased frequencies which will then lie very close to each other in the frequency domain. With two close frequencies, the effect will be to produce artefacts at the sum and difference of the two frequencies - it is generally the difference frequency which will then manifest itself as ringing/beating (ie moire fringe effects) artefacts in the aliased image.

3 (a) Consider an $(n \times n)$ block of image pixels denoted by the matrix X. If we multiply X on the left by the DCT matrix T, we produce another $(n \times n)$ matrix, Y

$$
Y=T X
$$

It is easy to see that the $i j$ th element of $Y, Y_{i j}$ is given by

$$
Y_{i j}=\mathbf{t}_{i} \cdot \mathbf{x}_{j}
$$

where \mathbf{t}_{i} is the i th row of T and \mathbf{x}_{j} is the j th column of X. We can see therefore that if \mathbf{y}_{i} is the i th column of Y then

$$
T \mathbf{x}_{i}=\mathbf{y}_{i}
$$

is the 1D DCT of $\left.\mathbf{x}_{i}\left(\mathbf{y}_{i}\right)_{j}=\mathbf{t}_{j} \cdot \mathbf{x}_{i}\right)$.
Thus, the columns of Y give the 1D DCTs of the columns of X.
Similarly, we can see that if we take $W=X T^{T}$, then the $i j$ th element of W is $\mathbf{x}^{\prime}{ }_{i} \cdot \mathbf{t}_{j}$ where $\mathbf{x}^{\prime}{ }_{i}$ is the i th row of X. Thus, the rows of W give the 1-D DCT of the rows of X.

It is therefore clear that $T X T^{T}$ will first form the 1-D DCT of the columns of X, and then take the 1-D DCT of the rows of $T X$ - thus performing a 2-D DCT transform (operation is separable).

END OF SOLUTIONS

$3(b)($ cont 2$)$
For $n=8$:
No. of multiplies's for $y=T x$ is $8 \times 8=64$
and no. of adds is $8 \times 7=56$
Whereas test cts splettis this into two $\frac{n}{2}$ tramform give:

$$
\begin{array}{r}
\text { No of multiplies }=2 \times 4 \times 4=32 \\
\text { No of tads }=2 \times 4 \times 3+\frac{2 \times 4}{\uparrow}=32 \\
\text { to form } \underline{u}+\underline{v}
\end{array}
$$

$$
4 \times 4
$$

If we L_{0} the sametrich on one of the matrices above ane of the 4×4 multiples is replaced by $2 \times 2 \times 2=8$ and me of the 4×3 adds is replaced by $2 \times 2 \times 1+2 \times 2=8$ saving $16-8=8$ mults and $12-8=4$ adds.
Hence the totals are $32-8=24$ mulls

$$
\text { and } 32-4=28 \text { adds }
$$

(2 further milts can be raved as the $2 \times \overline{2 D C T}$ needs only 2 mulls).
For an 8×8 2D DCT we need to tramforms 8 separate columns of x firs and then 8 vows of the result, 2σ the tolats are: $(8+8) \times 24=384$ mult and $(8+8) \times 28=448$ adds This compares airt $(8+8) \times 64=1024$ multi $9(8 * 8) \times 56=896$ adds for the dired-method.

3 (c) No. of bit to code subband i, j

$$
\begin{aligned}
& \text { Io. of bitt to code subband } c, j \\
& =H_{i, j} \cdot(128 \times 96)=H_{i, j}, 12 \mathrm{~K} \quad(1 \mathrm{~K}=1024)
\end{aligned}
$$

There is 1 band with entropy $H_{1 \prime \prime}=\frac{6}{2-1}=6$ bis/coef

$$
\begin{aligned}
& 2 \text { bands } H_{1,2}=\frac{6}{3-1}=3 \text { bis/. } \\
& 3 \\
& \text {... } H_{1,3}=\frac{6}{4-1}=2 \text { hist. } \\
& 4 \quad \cdots \quad \cdots \quad H_{1,4}=\frac{6}{5-1}=1.5 \mathrm{bij1} \mathrm{H}_{2}
\end{aligned}
$$

etc.
Hence the total bits for the mage $=\left(\sum_{i=1}^{8} \sum_{j=1}^{8} H_{i, j}\right) \cdot .12 K$

$$
\begin{aligned}
& \text { Hence the total bits for th } \\
& =12 k\left(6 \cdot 1+3.2+2 \cdot 3+1 \cdot 5 \cdot 4+\frac{6}{5} \cdot 5+\frac{6}{6} \cdot 6\right. \\
& \quad+\frac{6}{7} \cdot 7+\frac{6}{8} \cdot 8+\frac{6}{9} \cdot 7+\frac{6}{10} \cdot 6+\frac{6}{11} \cdot 5 \\
& \left.\quad+\frac{6}{12} \cdot 4+\frac{6}{13} \cdot 3+\frac{6}{14} \cdot 2+\frac{6}{15} \cdot 1\right) \\
& = \\
& 12 k\left(6 \times 8+6\left(\frac{7}{9}+\frac{6}{10}+\frac{5}{11}+\frac{4}{12}+\frac{3}{13}+\frac{2}{14}+\frac{1}{15}\right)\right) \\
& = \\
& 12 k(48+6 \cdot 2 \cdot 6059)=12 k \cdot 63 \cdot 6357 \\
& =781,956 \text { bib }
\end{aligned}
$$

In practice it would be a little larger than then, say about 800,000 bits.
$3(\alpha)$ The case of $n=2$ is the simple Hoar transform, which is known to give much worse compression than the $n=8$ DCT, especially if only used at one level (ie not in multi-level form like a wavelet transform). However $n=2$ is very simple to compute.
The case of $n=4$ gives better compression than $n=2$, but not as good as $n=8$.
The case of $n=16$ gives slightly lower entropy than $n=8$, but the artifacts are bigger and therefore mare visible.
Hence $n=8$ turns ont to be the optimum. DCT size for mort purposes and is the sire used in TPEG.
Computation goes up with size n, but not dramatically so because of the efficiency of the factorization strategy in part (b), and tho fact that the number of blocks $\propto \frac{1}{n^{2}}$

This question was attempted by 8 IIB candidates and 1 graduate. Parts a) and d) were answered well by almost all candidates (mostly bookwork). Parts b) and c) were the source of most lost marks - candidates generally knew what was required but some were unable to recall the details.
$4 .(a)$

Analysis back
 Reconstruction bank.

The perfectrecoustructin requirement is that the reconstructed vector \hat{x} should be'identical is the input vector x, if yo $\% y$, are fed unaltered from the analysis bank to the recoustindion. bank.

This is important in an image coding system, so that the only source of distortion is due to the quantisation of transform coefficients.

4(b) One level of 2-D filterbank:

columnfilteo
3 levels of the above 2-D filtertanh would be
 Level 3 ken

There are 3 subbands at Levels 1 and 2 and 4 at level 3 giving 10 subbands in all There can be arranged in ahinatric as follow

4(c) Image:

Highpass filters tend to detect edges a ignore smooth regions of the data.

Lowpars filler tend to ignore fine detail and respond to smooth regions.
Hence a highpais filter along the rows will tend to detect vertical edge structures, and a highpors down the columns will Leted-Rorvicontal edge structures.
A Aighpars filter in both directions will only respond to comers of the square. Hence the 34 subbauds at level 1 will look like

The Leto band image is just a smaller version of the original, so the same effects will occur in the mbband at levels $2+3$ and the set of 10 sabband will be:

4 (c) (cont.)

Note that here we plot the magnitudes of the wavelet corps, such that dark lines/point indicate large amplitude coefs, while while paper indicates low amplitude coff.

4(d) The reconstruction filter bank is just the reverse of the analysis bank. Hence it boles like:

where: column files
row filter

$4(d)($ cont. $)$
Since the reconstruction fillers in part (a) can be designed to perfectly reconstruct \widehat{x} to be identical to x, the above/recoustruction block will invert the operations of the 2-D analysis block in part (b) at each level. Hence the whole 3-level filter bark above will wivert the 10 bands of the 3-level analysis bank in part (b).

Data compression lends to suppress or heavily quaftise the higher - frequency wavelet coefficients, so it is very important that the image that is reconstructed just from the lower frequency coefficients is relatively smooth and free of high frequency or Blocking cortifacts. Hence the impulse response of the lowpass reconstruction filler, $G_{0}(z)$ in part (a), should be as smooth as possible, while still preserving the perfect reconstruction of the group of fillers H_{0}, H_{1}, G_{0} and E_{1}.

This question was attempted by 8 IIB candidates and 1 graduate. It was well done by all who attempted it and the high average mark reflects the fact that it was mainly bookwork. All parts were answered competently, with perhaps (c) causing a bit of confusion with some candidates. This question was the easiest on the paper, but the fact that only 8 IIB candidates did it reflects that one needed to have revised well to answer it.

