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1. In each case the complex integrand has a branch point at z = 0, so the contour is the
same in each case, the standard “keyhole” contour.

a)

b)

Let us call the integral to be evaluated I. Consider the complex integral,

logz
J= /1+ 2

On a small circle of radius e around the origin, write z = £e®, so the integral
becomes

dﬂ loge +140 .

o mae —>0 as £—0.

Similarly on a very large circle of radius R, z=Re®,

log R+1i0 .,
o dom iRe” —0 as R—ooo.

What remains are the straight sections just above and below the positive real axis,

logz O logxz+2mi . .
J= / dzx 1tz T 3 / d:c——-l-_i_T-— 2mi ]

Now due to the residue theorem, the complex integral is 2mi x the sum of the
residues of the poles inside the contour. There are two simple poles at z = =+ 1,
where the residues are lim, ,; (z —4)/(z —i)(z +1) x log z=1/2{ x 7i/2=n/4 and
lim, , ;(z+1)/(z —4)(z +1) xlogz=—1/2i x 3mi/2=— 37i/4, so

I=2rmi(n/4—3n/4)/(—2mi)=m/2 [40%]

Again let us call the integral I, and consider the complex integral

_ [ Qogz)?
= [ sy,

The contour and the integrals on the circular sections are the same as in part a).
On the straight sections, we have

J / dx (logx)2+/0d (log = + 2mi)?
0

I+z?2  Jo 142
oo —_—
= / oI A8 _ 0T yif —9md — 4mil
0 1+zx 2

where we have used the result of a) to evaluate one of the integrals. The value of
J again is obtained from the residue theorem,

_ o (ogi)? (og—9)2\_ [ 7 9*\_, 5
J—2m< o> + Y =7 4+4 =27

So therefore I =0. [30%]
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¢) Call the integral I again, and consider the complex integral

- [ G52,

1422

The integral vanishes on the circular sections as in parts a) and b), and on the
straight sections we have

_ (log z)* a:)3 (log = + 2mi)®
J = / s -y =11z
*  6mi(log :c)2 1272 log x — 87
= dz
0 1+ 1232

= 4r% —6mil

where we have used the results from parts a) and b). The residue theorem gives

-\3 _ N3 -3 -3
Jzzm'((k’gf‘) 4 (log—9) )=w(—i7r—+27” >:—1§iﬂ'4

21 -2t 8 8 4

So I = (an% — Zin?)/6mi=73/8. [30%]

Most candidates understood the basics of contour integration, although Jordan’s Lemma was
misapplied. Part (a) was well done by almost all, but few were able to successfully tackle parts (b)

and (c).
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a) - The Fourier Transform is given by

F@) = [ daf@es

%) oo
— / dme—aa:eiwz,':/ dme(iw—-a)z
0 0

_ _1_[e<iw-a>z]z=°°= 1 [20%]

w—a z=0 w—a

b) The inverse transform gives f(z) in terms of an integral of F'(w),

flz) -21—7T/_o° dwF(w)e ™=

1 o] e—iwz
= —/ dw -
27 J_ w—a

Consider first z < 0, and let us complete the contour in the upper half plane by a
large semicircle, so that Jordan’s Lemma applies. The pole of the integrand is at
w = — ia, so there are no poles in the closed contour, i.e. f(z) =0 as it should be.
For z > 0, complete the contour in the lower half plane. The integral vanishes on
the large semicircle again due to Jordan’s Lemma. The integral then is 2mi x the
residue at the pole, so that

f(w)zil;wli,r?ia 2m(w +ia)/(w+ia) x e~ T =707 [80%]

A popular and easy quegtion that was well done by most candidates. Some candidates used Jordan’s
Lemma as a throw-away remark without explaining their working. And some considered only x>0,
without considering the case x<0.
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Question 3

(a) The Taylor series expansion is:
F ) = FO0) + gy = X)) + 3Gty — 307 f7 () + R

where R represents the higher order terms.

Let R=0, i.e. approximate f(x;,;) as a quadratic.

Differentiating with respect to x;,:

I ra) = 1) + g = 27 ()
If x;.,; is the location of the minimum of f(x), then f’(xz4;) =0, and therefore:
0= f"(xp) + (xgar = X ) f " (X)
Sa)

‘xk-l'l = xk - f”(xk)

(b @

The variable costs are those of the tower and of the cables.

The volume of the tower is: Vi = hAt

h
By simple trigonometry: tanf = 7 = h=dtan6

Wdtan0
Ootr

VT = ATdtan0=

The volume of the cable used is: Vo =2IAc

where [ is the length of one of the two cables.
d
cos@

ERCIE AR

cos@ \cosO\20ycsinf) OgcsinbcosO

d
By simple trigonometry: cosf = 7 = I=

Csection = CC VC + CT VT
wd N Wdtan@
O'OC sin@cos8 O-OT

Csection = Cc

Csection =

CcoWd 1 C '
& - +=I%0C tang
Ogc | sin@cos@ CoOgr

Using the trigonometric identity 2sinfcos8=sin26

1
= =2csc26
sinfcos@ sin26
C-wd
CsectiOn =< (2 csc20 + ortan 9) where o = _CT Ooc
Goc CcOor

[15%)]

[20%]



(ii) f(@)=2csc20+ atanf
f'(8)=—-4csc20cot20 + osec? 6
F7(6) =—4(=2csc20cot26) cot 20 — 4csc20(=2 csc? 26) + 2asec’ Otan O
7o) = 8csc20cot?26 + 8csc’ 20 + 2asec Htan O
f7(0)=38 csc’ 29(1 +cos? 29) +2asec? Otand
LGP,
0,.,=0,—
k+1 k f”(ek)
Hence:
(6
6 "(6;) "(6¢) Or1 =60~
e (6 G k1 =%~ "m0,
0.5 —2.403015684 | 18.05578556 0.633088404
0.633088404 | —0.549041959 | 11.17309363 0.682228058
0.682228058 | —0.025464505 | 10.23804534 0.684715301
Thus 0, = 0.6847 radians

(iii) At the minimum f’(8)=0 and f”(6)> 0.

£(6) =—4csc20cot20 + asec? 0 =0

1 cos20

1

: —— +a—
sin2@ sin26 cos“ 0

o 4cos20  4(1-2sin’6)

cos’@ sin’20 (2sinfcos (9)2

using cos20=1- 2sin” @ and sin20 = 2sinfcosH.

p— 1 2
oc=(1 2sin” 6)

K

sin® @

1
sin20=2— = @=sin

+o

1

1
V240

)

For =05 .. O, = sin"l(—l-) = sin"1(0.6324555) = 0.68472 radians

Should check f”(6)> 0.
From above

For 6=0.68472 radians

2.5

£7(0)=10.2062 = aminimum

f(6)= 8csc? 29(1 + cos? 29) +20sec® Otan @
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Thus Newton’s method has found a good estimate of the true minimum in three iterations.

This implies that f(8) is well approximated as a quadratic function.

A popular question that was well done by Part IIB candidates but rather less well done by Part IIA

candidates. Most candidates seemed to know what they were trying to do. The most common sources

of error were poor differentiation skills and poor calculator use.

=

[45%]

[20%]
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Quesfion 4

(2)

(b)

The objective is to minimise 7,.

. - . P .
The constraint on yielding Gyn(roz - r,-z) = P can be rewritten as (r02 - riz) 2——,s0in
no
y

P
standard form: g = —— (r02 - riz) <0
7Z'O'y

: - : 5pgL’ ,
The maximum deflection constraint &, = P ) <0.001L can be rewritten as

96F (roz + r,-2

625pgL’ : 625pgL’
—liegi < (ro2 + riz), so in standard form: g, = %— (r02 + riz) <0

In addition, it is physically obvious that r, = r; and r; 2 0. Thus, in standard form the task is
Minimise 7,

P
Subjectto g =K, —(roz —riz)SO where K, = —
y

625pgL

—Ky—{r24p2 =
g8 =K, (ro +7 )SOwhere K, E
g=r—-1r,<0ie.r,2r;

ga=-1r<01ie. 120

For the values given

P 50x10°
o, 7 x200%10°

K, = =7.9577x107 m®

_ 625pgL’ 625 77000x2.5°
27 12E 12%x200x10°

Thus the equations of the constraints when g=0 are:

=3.1331x107* m?

g 1,=17.9577x107 +1?

g 1,=+3.1331x107 = 12
8- L=
The feasible region is therefore as shown on the next page.

Contours of the objective function are horizontal lines. Thus, by inspection the optimum

occurs at the intersection of g; and g,. So these two constraints are active, and g3 and g, are
inactive. '

[15%]
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g and g, intersect when

7, = 7.95T7x 1075 + 1% =3.1331x 107 - 2

2r% =3.1331x107* - 7.9577x107
% =0.01081m
7, =0.01402m [35%]

(¢) From (b) we know g5 and g, are inactive at the optimum. Thus

L=r, +“1[K1 - (roz - ’tz)] +U2[K2 - (roz + rzz)]

JL
= =1+ ul=2r, ]+ mf-2r,] =0 O
rO

JdL

§=‘u1[2r,~]+.u2["2ri]=0 )

Case (i) 4y =0and u, =0
= 1=0

*. impossible

Case (ii) ¢y =0and u, >0
2= -21r=0 = =0
@)= K,~1>=0 = r,=,K,=001770m

Need to check g; =K;— (ro2 - riz) <0 is not violated:

g =7.9577x107 — (3.1331x 107 —02) =-23373x107* <0 .. OK

‘q.
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= 1-2ur,=0 = ,u2=2L=28‘25m'1
¥,

o

. a minimum

Case (iii) 4;>0and i, =0

@)= 2ur=0 = =0

B)= K, -r2=0 = r,=4K, =0.00892m

Need to check g, =K, ~ (roz + riz-) < 0 is not violated:

g, =3.1331x107* = (7.9577x 107 +0%)=23373x107* .. g, is violated
*. impossible

Case (iv) 4; >0 and i, >0

®= K -(n2-r*)=0

W= K,—(r,2+5%)=0

K, +K
()+@) = K +K,—2r2=0 = r0=1/%=0.01402m

’K _
4)-3)= Kz—K1—2G2=0 = r= —ZZ—EL:O.OIOSIm

@)= 2ur-2Un=0 = K=l
=17.84m™"

W= 1-2u7,-24r,=0 = 1-4u7,=0 = N1=N2=41
r

[4]
. a minimum

As the value of the objective (r,) is smaller than for the minimum in case (ii) this is the global
minimum. [40%]

(d) The values of the K-T multipliers give the sensitivity of the objective function to changes in
the constraint limits. As 1 = U, the objective function will change at the same rate as the

associated constraint limits (the values of X, and K,) are relaxed.

This is also apparent from the result for r, found above — r, = 1’@ [10%]

A popular and well done question for Part IIB candidates; less popular and less well done for Part
IIA candidates. There were a few instances of candidates not knowing how to apply the Kuhn-
Tucker multiplier method, but the most common source of error was a failure to identify the feasible
region correctly. Candidates who got this wrong and then tried to fudge the rest of the answer in line
with this inevitably found the going tough.
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