ENGINEERING TRIPOS PART IIB

Friday 6 May 2011 9 to 10.30

Module 4A12

TURBULENCE AND VORTEX DYNAMICS
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
4412 Data Card: (i) Vortex Dynamics (I page);
(ii) Turbulence (2 pages)

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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State the Prandti-Batchelor theorem. [10%]

Consider a steady, two-dimensional flow with closed streamlines. It has a

steady temperature field 7, thermal diffusivity « , and stream-function y.

(c)

(d
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(i)

(iii)

(iv)

Starting with the advection-diffusion equation:
u-VT =aV’T
show that T takes the form T = T(y) when & = 0.
Hence show that, when « is small but finite:
u-V7T =a{V-[T'(y)Vy]+ (small correction) }
where the correction tends to zero as a — 0.

Use Gauss’ theorem to integrate this equation over the area 4 which is
bounded by a streamline C. Confirm that:

a{T "(w) _[Vz// -dS + (small correction) } =0

where dS =nd/ is part of the surface that encircles the area 4, n is a
unit normal to the streamline and d/ is part of that streamline.

Use the fact that J'Vg// -dS = —cj‘c u-dr, where dr is a short element

dr|=dl, to deduce that T'(y)=0 in the limit of
a — 0. What is the physical interpretation of this result? [50%]

of the streamline,

Discuss how the proof of T ’(l//) =0 in part (b) may be adapted to prove the
Prandtl-Batchelor theorem:. [30%]

What is the physical interpretation of the Prandtl-Batchelor theorem? [10%]
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2 (a) State Kelvin’s circulation theorem and Helmholtz’s two laws of vortex

dynamics.

[20%]

(b) Consider two adjacent fluid particles, 4 and B, in an inviseid fluid which are
linked by the displacement vector dr(¢)=x,(¢)—x,(¢) and which lie on the same
vortex line at r=0. Since dr and co(x ,) are parallel at =0, we may write
dr(t=0)= ﬂco(x b= O), where A is some scalar. We give A the property
DA/Dt =0, so that it is a constant of the fluid element 4B for 7 > 0, and introduce the

vector:

C(x,,1) =dr(t) - lo(x 1)

whichiszeroat r=0.

®

(i)

(iii)

Use the fact that a short material line element obeys:

Dgt(dr) —(dr-V)u

to show that, in an inviscid fluid:

L€ _covu
Dt

Hence show that, by virtue of the initial conditions, we have
C(x,,t) =0 for ¢ > 0, and that consequently:

ar(t)  o(x,,?)
ldr(t=0)|  |o(x,,t=0)|

Deduce that 4 and B always lie on the same vortex line and that
consequently vortex lines in an inviscid fluid are convected like
material lines. [50%]

(c) An alternative proof that vortex lines are frozen into an inviscid fluid can be
constructed with the help of Kelvin’s theorem. Consider a thin, isolated vortex tube and
a closed curve C that encircles the tube at ¢ = 0. Use Kelvin’s theorem to show that, if
C is a material curve always composed of the same fluid particles, then C must encircle
the vortex tube for all time. Deduce that vortex lines must move with the fluid, like dye

lines.
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3 A hot wire is to be used at the centreline of a turbulent axisymmetric air jet
originating from a round nozzle with diameter d =10mm and with a uniform nozzle

velocity U, =50 ms™ . Both the jet fluid and the ambient air are at 1 bar and 300 K.

The mean centreline velocity U, at a distance x from the nozzle obeys
U, /U, =6.4(x/d)™".

(a) By making reasonable guesses for the turbulent integral length-scale and the
r.m.s. velocity fluctuations at x =50d , estimate the highest frequency of motion seen

by the hot wire at this location. [70%]

(b) For how long should one collect data if we require the mean measured
velocity to be within 1% ofits true average at this location? [30%]
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< In a dense rain, raindrops of diameter d =2 mm and at a number density of
n=10*drops/m’ fall at their terminal velocity # =2 ms™ in air that has no mean flow.

Assume that the wakes behind the drops eventually produce stationary homogeneous
isotropic turbulence with integral length-scale L and kinetic energy k.

(a) Discuss why we may expect d < L <n™"?. [20%]

(b) Using the extreme values for L from part (a), provide upper and lower
bounds for the characteristic turbulent velocity k/*. Find L if k"> =u. [60%]

(¢) In a more detailed view of the turbulence in this problem, the wakes behind

the drops can be thought of as self-preserving axisymmetric wakes. Given that the half-
width §,,, of an axisymmetric wake grows as &,,,/d ~0.6(x/d)"”, where x is the

distance behind the drop, provide an alternative estimate for L. [20%]

END OF PAPER
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Vortex Dynamics Data Card

Grad, Div and Curl in Cartesian Coordinates
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Integral Theorems

Gauss: [(V-A)dV =§A-dS

Stokes: [(Vx ) dS=§A-dI

Vector Identities

V(A-B)=(A-V)B+(BV)A+ Ax(VXxB)+ Bx(VxA)
V-(A)= f(V-A+A-Vf
Vx(AxB);A(V-B)—B(V-A)+(B-V)A—(A-V)B
VX(VxA)=V(V-A4)-V?4

Vx(Vf)=0

V- (VxA)=0

Cylindrical Coordinates (r, 6, z)
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4A12: Turbulence

Data Card

Assume incompressible fluid with constant properties.

Continuity:
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Scalar fluctuations (02 = ¢’¢'):
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Energy dissipation:
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Scalar dissipation:

; 2
ON = 2D<a¢ ) ~ 2552
Bacj k

Scaling rule for shear flow, flow dominant in direction z;:

u %1
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Kolmogorov scales:
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e = ()"
= (/o)
v = (u5)1/4
Taylor microscale:
2
s=1.5y%

Eddy viscosity (general):

T
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Eddy viscosity (for simple shear):
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ENGINEERING TRIPOS PART IIB 2011
MODULE 4A12: TURBULENCE AND VORTEX DYNAMICS.

NUMERICAL ANSWERS

Ql.-

Q2. -

Q3. (a) 80kHz, (b) 4.9 s

Q4.(a)-, ) L=10.7m, (c) L=3.4mm



