ENGINEERING TRIPOS PART IIB

Wednesday 11 May 2011 2.30t0 4.00

Module 4C6

ADVANCED LINEAR VIBRATIONS
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachment:
4C6 Advanced Linear Vibration data sheet (10 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 An impulse hammer of mass 0.005 kg is to be used to conduct a modal test on the
back of a guitar whose mass is around 0.1 kg. A theoretical model suggests that the
nodal lines of the first six mode shapes and the corresponding natural frequencies are
those shown in Fig. 1.

(@) Determine the approximate duration of the impulse necessary to excite the
first six modes satisfactorily without exciting higher modes.

(b) What value of the stiffness of the hammer tip will give a suitable pulse?

(c) The force transducer has a sensitivity of around 1 pCN" and the hammer
strikes the guitar at a speed of around 1 ms™.  Design a simple charge amplifier to
produce an output signal suitable for a data logger with an input range of +5 V.

(d) Select a suitable sampling rate for the data logger so that the use of an anti-
aliasing filter is not required.

(¢) Sketch the form of the magnitude of the transfer function that might be
measured if an accelerometer of negligible mass is fixed on the guitar at point B (shown
in Fig. 1) and the impulse is applied at point A.

(® If a mass of 0.02 kg were to be glued to the guitar at the point C describe
with sketches how you might expect the mode shapes, modal frequencies and transfer

Seelir

function to change.
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2 (@ The damping properties of materials can be measured using three
approaches: transient decay of vibration; behaviour near peaks of vibration transfer
functions in the frequency domain; the response to forced vibration. Outline the
advantages and disadvantages of each method. With reference to information given in
the Data Sheet, explain which method you would choose to measure the damping of

(i) glass;
(i) PMMA;
(iii)) butyl rubber.

(b) A beam made of low-damping tool steel is to be given a coating on one side
only, to increase its vibration damping to reduce fatigue damage. The coating is to be
much thinner than the beam itself. Using information from the Data Sheet on free-layer
damping, obtain an approximate expression for the effective damping factor 7 of the
coated beam. Do not assume that the coating material necessarily has light damping, but
ignore the damping of the tool steel.

() Explain how the chart of material data for Young’s modulus and damping,
given in the Data Sheet, can be used to select the best material for the coating, in the
sense of maximising 7. Would you choose a metal or a polymer for this task?
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3 () Explain briefly the mechanism by which a Helmholtz resonator works.
Using the notation and information from the Data Sheet, give expressions for the mass
and stiffness of the effective mass-spring oscillator which represents the Helmholtz
resonance.

(b) Two Helmholtz resonators have the same neck details but different volumes,
and they are connected together by a narrow tube which allows some air flow governed
by viscous force. The system can be approximately represented by the mass-spring-

dashpot arrangement shown in Fig. 2, with two equal masses m, two springs of stiffness
k, and k,, and a dashpot of strength c¢. The dashpot strength may be assumed to be

very small. Write down the mass, stiffness and damping matrices, and hence obtain the
governing equations of motion for the system in first-order form.

(¢) Assuming a form

for one mode of the coupled system, where A is the relevant eigenvalue of the matrix 4
given in the Data Sheet, show that the following equations must be approximately
satisfied:

—ky — Ac ~ mAP

—oky + Ac = mai?

if it is assumed that [a] <<1. Hence obtain an approximate expression, accurate to first

order in ¢, for the frequency and damping factor of this mode, and show that the two
masses move with a phase difference of approximately 90°.

(CONT.
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4 (a) A circular membrane with radius a, tension per unit length T and mass per
unit area m is fixed around its perimeter. Using information from the Data Sheet, find
expressions for the first 6 natural frequencies.

(b) The centre point of the membrane is now constrained so it cannot move.
Which of the natural frequencies change and which remain the same? Considering the
axisymmetric modes alone, what does the interlacing theorem say about the possible
constrained natural frequencies? Sketch a guess at the first axisymmetric mode shape.

(¢) To investigate more carefully the first natural frequency of the constrained
membrane, suppose that the membrane is fixed not just at a single point, but around an
inner circle of radius b<<a. The axisymmetric solutions consist of a linear
combination of the Bessel function Jy (k) and the second solution to Bessel’s equation,
called Yy(kr). Both functions are plotted in Fig. 3: Jy(kr) in the solid line and Yo(kr)
in the dashed line. Note that Yy(kr) - —0 as r — 0. Explain briefly how you would
construct a solution satisfying the fixed boundary conditions at r=a and r=5. Now
consider what happens as 54— 0, and hence find the lowest frequency of the point-
constrained membrane.

Bessel function

0 05 1 15 2 25 3 35 4 45 3
kr
Fig. 3
END OF PAPER
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Part IIB Data sheet
Module 4C6 Advanced linear vibration

VIBRATION MODES AND RESPONSE

Discrete systems Continuous systems
1. The forced vibration of an N-degree-of-  The forced vibration of a continuous system
freedom system with mass matrix M and is determined by solving a partial differential
stiffness matrix K (both symmetric and equation: see p. 4 for examples.
positive definite) is
Mg+ Ey=F

where y is the vector of generalised
displacements and fis the vector of
generalised forces.

2. Kinetic energy

1 .s. . 1.2
T=—vy'M ==[u"d
LAt 2f m

where the integral is with respect to mass
(similar to moments and products of inertia).

Potential energy
See p. 4 for examples.

1 :
V=252
3. The natural frequencies w,, and The natural frequencies w, and mode
corresponding mode shape vectors _zg(") shapes u,(x) are found by solving the
satisfy appropriate differential equation (see p. 4)
K y(n) _ wnz Ml_l(n) ) and boundary conditions, assuming

harmonic time dependence.

4. Orthogonality and normalisation

L_l(f)tML_t(k)={O’ J..gk
. u;(x)up(x)dm= :
g & TRk Jrsteom (L =k
S e =k
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S. General response

The general response of the system can be
written as a sum of modal responses

N
y(® = >q;(t) u? =Uq(r)
j=1
where U is a matrix whose N columns are
the normalised eigenvectors L_t(j ) and ¢g; can

be thought of as the “quantity” of the jth
mode.

6. Modal coordinates g satisfy
g+ [diag(w? )] q=0
where y = Uq and the modal force vector
0-U'f.

7. Frequency response function

For input generalised force f ; at frequency

o and measured generalised displacement
Y the transfer function is

N, (n), (n)
; u Uy
H(jko)=2k= 3L F
J n=1 @, -0

(with no damping) or

=_k
wfz

n=1%n

H{(j,k,
( 2 4 Zza)a)n§ n= w?
(with small damping) where the damping

factor ¢, is as in the Mechanics Data Book
for one-degree-of-freedom systems.

8. Pattern of antiresonances

For a system with well-separated resonances
(low modal overlap), if the factor u (")

has the same sign for two adJacent
resonances then the transfer function will
have an antiresonance between the two
peaks. If it has opposite sign, there will be
no antiresonance.
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The general response of the system can be
written as a sum of modal responses

w(x,t)= ¥ q;(t) u;(x)
J
where w(x,1) is the displacement and ¢; can

be thought of as the “quantity” of the jth
mode.

Each modal amplitude ¢ (1) satisfies
4j+ @7 4;=0;

where Q; = [ f(x,£) u;(x) dm and f(x,7) is
the external applied force distribution.

For force F at frequency w applied at point
x, and displacement w measured at point y,
the transfer function is

W Up (%) U (y)
H(x,y,w)=— i Bl 5 S
( Xy, ) F ; wnz_wz
(with no damping), or
W un(x)un(y)

H(x,y, =

2

0 py

(with small dampmg) where the damping
factor {, is as in the Mechanics Data Book

for one-degree-of-freedom systems.

24 2iww,, -w

For a system with low modal overlap, if the
factor u,(x)u,(y) has the same sign for two
adjacent resonances then the transfer
function will have an antiresonance between
the two peaks. If it has opposite sign, there
will be no antiresonance.
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9. Impulse response

For a unit impulsive generalised force For a unit impulse applied at = 0 at point x,
fj =6(t) the measured response yy is given the response at point y is

b
y grn)=3 i ACIL 16—
N ) n Wy
i, K, t r)= t , .
8y =0 2 Siny for ¢ =0 (with no damping), or
for ¢ =0 (with no damping), or g(x,y, t) = E Un(%) 1 (Y) sin w,t ¢~ Onbnt
1)
Ny, (n)y, (n) 7 "
s u] Up s -, t . 5
g(j.k, t) = 2— sinw,te "~ n°n for ¢ =20 (with small damping).
n=i  @n
for ¢ =0 (with small damping).
10. Step response
For a unit step generalised force For a unit step force applied at ¢ = 0 at point
0 <0 . X, the response at point y is
fi= | +20 the measured response y; is " (0) 1, (3)
given by h(x.y,) = EL—zn— [1 ~Coswyt]
) o
N . <
h(jikot) = yi (6) = E 1 cosm, t] for ¢ =0 (with no damping), or
n=1 h(t)zz un(x) ;‘n()’) [l—coswnt e—(l)nCnl‘:l
for ¢t =0 (with no dampmg), or n Wy
( ) for £ =0 (with small damping).
h(j.k,t) = Z [1—coswnt e'wn;nt]

for ¢ =0 (with small damping).

Rayleigh’s principle for small vibrations

t
V YKy
The “Rayleigh quotient” for a discrete system is = = =—— where y is the vector of
T yt M y 4
generalised coordinates, M is the mass matrix and KX is the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on p. 4.

If this quantity is evaluated with any vectory, the result will be

(1) = the smallest squared frequency;

(2) < the largest squared frequency;

(3) a good approximation to a),% if y is an approximation to g(k)

(Formally, % is stationary near each mode.)
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS
Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,¢), applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2
Iw 92w 1 aw 1 ow
~P—F = t V==P dx T== —| dx
e L 2 f(&x) 2mf(at)

Torsional vibration of a circular shaft

Shear modulus G, density p, external radius g, internal radius & if shaft is hollow, angular
displacement 6(x,?), applied torque f(x,¢) per unit length.

Polar moment of area is J = Jr/2)(a -b )

Equation of motion Potential energy Kinetic energy
2 2 2
0 0 a0 1 a0
J GJ —5 = t = —GJ dx ==pJ[|—| dx
pl—7 - f(x1) 5 j(&x) 2pf(at)

Axial vibration of a rod or column

Young’s modulus E, density p, cross-sectional area A, axial displacement w(x, ), applied
axial force f(x,¢) per unit length.

Equation of motion Potential energy Kinetic energy
2 2
9w 9w 1 aw 1 ow
A—s — EA—5 = f(x,t V==EA[|—| dx T==pA[l|—]| dx
& ot o /s 2 f ( z?x) 2 f ( ot )

Bending vibration of an Euler beam

Young’s modulus E, density p, cross-sectional area A, second moment of area of cross-
section /, transverse displacement w(x,), applied transverse force f(x,#) per unit length.

Equation of motion Potential energy Kinetic energy
4 B % 2
9> "w I“w 1 ow
pA—%K+EI——4- flx,0) V——Elf( ) dx T=EpAf('3t-) dx

Note that values of I can be found in the Mechanics Data Book.
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VIBRATION MEASUREMENT

Some useful OpAmp circuits for instrumentation

(Note: j is used instead of i here for -1 for compatibility with the Electrical Data Book.)

R
S
B Inverting voltage amplifier
v R
—
Vo R
Vo = L Vi
R;
R
1 Inverting voltage amplifier with low-pass and
1] high-pass filter
C; I

. Vi
o
R: 1 .
i 1+ aR.C, )1 + ]a)Rfo)
C
hL Inverting charge amplifier
Q
Vo
y -2
o =
C
R
| S |
” Inverting charge amplifier with high-pass filter
0 C
V.
: ,__Q 1
Vet
Ci+ 1
L JoRC
C: R>
[| ——
0 I ——
] R; - Inverting charge amplifier with additional gain
Vo
QR +Ry
= © C Ry

4C6 data sheet

5 HEMH/JW 2009




Some devices for vibration excitation and measurement

Moving coi
electro-
magnetic
shaker

LDS V101: Peak sine force | DS V650: Peak sine forc

10N, internal armature 1kN, internal armaturg LDS V994: Peak
resonance 12kHz resonance 4kHz sine force 300kN;
Frequency range 5 — 12kHz, | Frequency range 5 — 5kHz internal armature
armature suspension armature suspension resonance 1.4kHz
stiffness 3.5N/mm, stiffness 16kN/m, Frequency range 5 —
armature mass 6.5g, stroK armature mass 2.2kg, o O .
2.5mm, shaker body mas stroke 25mm, shaker — s’i —
0.9kg body mass 200kg 72kN/m, armaturd

mass 250kg, strok
50mm, shaker bo
mass 13000kg

Piezo stack
actuator

FACE PAC-122C
Size 2x2x3mm

Mass 0.1g

Peak force 12N

Stroke 1pum

Unloaded resonance 400kK

PACA22C | omm x2mm x3mm

PAC-222C - «
AC.432C | 0079 x 0879°% 0118"

Impulse IH101
hammer , ‘ Head mass 0.1kg

hammer tip stiffness
1500kN/m

Force transducer sensitivity
4pC/N

Internal resonance 50kHz
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Piezo B&K4374 Mass 0.65g
accelero- sensitivity 1.5pC/g, 1-
meter 26kHz, full-scale rang
+/-5000g
DJB A/23 Mass 5g,
sensitivity 10pC/g, 1-
20kHz, full-scale rang
+/-2000g
B&K4370 Mass 10g
sensitivity 100pC/g, 1
4.8kHz, , full-scale
range +/-2000g
MEMS ADKIL202E
accelero- 265mV/g
meter
Full scale range +/- 2g
DC-6kHz
Laser Polytec PSV-400 Scanning
Doppler Vibrometer
Vibrometer Velocity ranges
2/10/50/100/1000
[mm/s/V]
4C6 data sheet 7 HEMH/JW 2009




VIBRATION DAMPING
Correspondence principle

For linear viscoelastic materials, if an undamped problem can be solved then the
corresponding solution to the damped problem is obtained by replacing the elastic moduli
with complex values (which may depend on frequency): for example Young’s modulus
E — E(1+in). Typical values of E and 1 for engineering materials are shown below:

Loss coefficient - Modulus |
:Lead alloys
©
2 10-14
o
©
- foams {
= Rigid
- Foams oa,‘,’?s"."“""
= 2 i
® 102 SN S > ..
PMMA |
@ i PET
Q \
S 4 Non-technical / Steels
§1o-3_; o . . ceramics S :
- 3 W alioys
H - _l. \ WC:
10544
:l T—r Tt T Ty T T T 2 Y Ty u!u‘
103 102 10-1 1 10 100 1000

Young's modulus, E (GPa)
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Free and constrained layers

For a 2-layer beam: if layer j has Young’s modulus E j» second moment of area j and
thickness £, the effective bending rigidity EI is given by:

h
EI = E I |1+ eh> +3(1 + h)* —
1+eh
where
e=&, h=ﬁ.
E ]

For a 3-layer beam, using the same notation, the effective bending rigidity is

oo B K [hy-d ) 2
El=E -1 +E 2+ E, =3 -E,-2 |31 Ehd® + E-hy (hy - d
RIS T IR TY v R 2y (hy1= d)

2 [E,h hx1—d

+E3h3(h31— d) - 2 2(}&1_d)+ E3h3(h31_d)] [ ii_ g J

Eyhy(hyy =ty 1/ 2)+ g(Eyhyhy  + Esiahs )
Eihy + Eyhy | 2+ g(Eihy + Eyly + Eshy)

where d =

b

+ h + h G
y hz’ AL B N 2 =,
2 2 E3h3h2p

G, is the shear modulus of the middle layer, andp =2x/ (wavelength ), i.e. “wavenumber”.

hy1=

Viscous damping, the dissipation function and the first-order method

For a discrete system with viscous damping, then Rayleigh’s dissipation function
F = % Xt Cy is equal to half the rate of energy dissipation, where y is the vector of

generalised velocities (as on p.1), and C is the (symmetric) dissipation matrix.

If the system has mass matrix M and stiffness matrix K, free motion is governed by
M2+C2+Ky_=0.

Modal solutions can be found by introducing the vector z = [ﬂ If z= geh then u, A are the

eigenvectors and eigenvalues of the matrix

0 I
A=| | "
-M—7K -MC

where 0 is the zero matrix and / is the unit matrix.
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THE HELMHOLTZ RESONATOR

A Helmbholtz resonator of volume V with a neck of effective length L and cross-sectional area
S has a resonant frequency

fS
W =Cq|—
VL

where c is the speed of sound in air.
The end correction for an unflanged circular neck of radius a is 0.6a.

The end correction for a flanged circular neck of radius a is 0.8a.

VIBRATION OF A MEMBRANE

If a uniform plane membrane with tension 7 and mass per unit area m undergoes small
transverse free vibration with displacement w, the motion is governed by the differential

62w + é?zw . c?zw
an? gy’ Jt?

in terms of Cartesian coordinates x, y or

equation

Pw Low 1Pw|  Pw
a? raor 2 ge? ar>

in terms of plane polar coordinates r,6.

For a circular membrane of radius a the mode shapes are given by
sin
}n@ J, (kr), n=0,123--.
cos
where J, is the Bessel function of order n and k is determined by the condition that

Jp(ka) =0. The first few zeros of J,,’s are as follows:

n=0|n=1 |n=2|n=3
ka=12.404|3.832 | 5.135| 6.379
ka=|5.520| 7.016 | 8.417| 9.760
ka = | 8.654| 10.173

For a given k the corresponding natural frequency w satisfies

k= cu‘/m/T.
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