ENGINEERING TRIPOS PART IIB

Friday 13 May 2011 9.00 to 10.30

Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.
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I The Kronecker delta and the permutation tensor are denoted by the symbols J;;

and €jjk » respectively.

(a) Determine the component f, for the following vector expressions

®  fi=Cytjs [10%]

i)  fi=enTi- [10%]
(b) Usingthe e—4 identity, write e, .eq, interms of the Kronecker delta. [15%]
(c) Given the coordinate transformation law 4; =ap;a,:4,,, where ay,),

denotes the cosine of the angle between the m™ primed and the n™ unprimed coordinate
axes, show that

) 4,
(111) eijke]gpAip

are invariant under coordinate transformations. [45%]

(d If By is skew-symmetric (ie. B;=-Bj;) and 4; is symmetric
(le AZ] = A]l) show that AIJBU =0. [20%]
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2 (a) For afunction ¢(x,y) in Cartesian co-ordinates show that

9 _ % Gng+ 9050

oy or o0 r
where the polar coordinates (r,8) are related to the Cartesian coordinates (x,y) via
the usual relations x =rcosd and y=rsinf.

(b) The Airy stress function
¢ = A(@ +

where A is a constant, has been proposed to determine the stress field in an elastic half-

space subjected to a surface couple A as shown in Fig. 1(a). Show that the stresses
ogp and o, calculated from ¢ satisfy the boundary conditions and hence

sin 26 )

Opp>

determine A interms of M.

(c) We wish to determine the stress field in the case of two equal and opposite
couples of magnitude A acting a small distance a apart as shown in Fig. 1(b). Using
superposition, or otherwise, determine an appropriate Airy stress function in the limit of
a vanishingly small «@. (Hint: Use the co-ordinate transformation relation derived in

part (a)).

M M M
a
r/ @ r/ e
X vx
(a) ()
Fig. 1

(TURN OVER

[20%]

[30%]

[50%]



4

3 (a) Explain the physical basis for the plastic deformation of metals. Why is
volume conserved during plastic deformation?

(b) Volumetric plastic straining can occur in a porous metallic solid. Explain
this observation.

(c) A thin-walled cylindrical tube of length [/, diameter d and wall thickness

-t is made from an isotropic, elastic-plastic solid. The solid obeys the von Mises yield
criterion and has an initial yield strength oy . Strain hardening of this solid is linear

such that in post-yield uniaxial tension, the tensile stress o is related to the axial

plastic strain e by a constant plastic modulus Z=do/ def . Blastic straining is

characterised by a Young’s modulus £ and Poisson ratio v . The tube is subjected to
an end tensile load P and torque @ which increase with time in fixed proportion

QO=aPd, where o isadimensionless constant.
(i) Determine the stress state in the tube wall in terms of Q and P.
(i) Obtain the yield load Py for =0 and a=1.
(iii) For a =1, obtain an expression for the hardening rate dP/du at

P> Py, where u is the axial extension. You may neglect the possibility of

necking.

END OF PAPER

[15%]

[15%]

[10%]

[20%]

[40%]



ENGINEERING TRIPOS Part IIB
Meodule 4C9 Data Sheet

SUBSCRIPT NOTATION

Repeated suffix implies summation

a=ae; +aye; +aze3 ae;
asb ab;=ab J-é'ij
c=aXxb cize[jkajbk
d=ax(bxg) dy = —ejjx€yrs AjbyCs = ajbrc ; — aibicy
Kronecker delta &; gj=1for i=j and 6;=0 fori#j
€ijk e;jr =1 when indices cyclic; =—1 when indices anticyclic

and = 0 when any indices repeat

e—¢ identity €ijkCilm = jl5km - 5jm5kl
tracea fra=a; =aj1+ ay +as3

80',7_80'1]- (90'21' 30'31-

Ciji

o dx dxy  dxz

gradg =V¢ adp ey

3.7&',' 4

divy Vi
curlV =V XV eijka,j
Rotation of Orthogonal Axes
If 01'2°3’ is related to 0123 by rotation matrix a;;
vector v; becomes Vg = AV

tensor Oj becomes O = Goi@p0;
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Evaluation of principal stresses
1

deviatoric stress s;; =0 —-?-;O'kktsij

0'3*110'2+120'—13:0 Ilzo-ii=tr0

12 = %(Giio'jj - O-ijo-i')

Ig= -é—(ei,-ke,,qr 045940

3 _Jo5—TJa= 1 1
s”=J25=J3=0 hi=sy=toss Jp=osysy 3 13 =558 jksk
equilibrium Ojjitbj= 0
small strains 1oy o) 1
Eij ==+ =—(u,~,j +uj’,-)
2\dx; dg ) 2
compaupiliy Eijxt + Extj — Eliki — Ekiljepikeqit€ijl =0
. _ ey _,
equivalentto epeqi€ijkl = €piklqjl EE =
Linear elasticity 0ij = Cijki€ul
Hooke’s law Egjj =(1+v)o; — Vo0
Lamé’s equations 0y =Ae by +2UEy

von Mises equivalent stress

1l

- ,3
= ES‘JS‘J = 3J2
equivalent strain increment 48 = ’_2_ de:-des:

- 3 gy

Elastic torsion of prismatic bars

Oe

Warping function ¥(x ,x, )satisfies Viy = ¥;=0

If Prandtl stress function ¢(x;,x, ) satisfies V2¢=¢; =—2Ga where o isthe
twist per unit length then

d d
031=¢,2=;-b% , 032=—¢,1=—'0% and T =2[, ¢(x1,2 Jxydvy
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Egquivalence of elastic constants

E v = A
Bsv } B E _E
2(1+v) 1+v)1-2v)
EG - et - @G-EBG
2G E-3G
E A - E-A+R E—-3A+R _
42 4
v,G 2GA+v) - - 2Gv
1-2v
v,A AQ+wv)1-2v) - A(1-2v) —
v 2v
G, A GBA+2G) A - -
A+G 2§A+G)

R=vE* +2EA+94>

Two-dimensional Airy Stress function

Biharmonic equation Vip= Doopp =0

Stresses  Ogp = €ny €85 P15
lifa=1,=2
Oifa=p
-1ifex=2,=1

where egg = €398 =

Plane stress and plane strain

1
Gepy =—§{0'11(1+K)+ G —3)}

1
Geyy ='§{022(1+K)+011(K—3)}

G2
Gegpg =—=
12 2
k=G-v)/(1+Vv) in plane stress and
where
Kk=3—-4v inplanestrain
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Plasticity
von Mises yield criterion

Jy flow rule

Slip Line Fields

Henky equations

Geiringer equations

f=0.,-Y=0
pu_3 % O
Y 20, h

e
p + 2k¢ = constant along « line
p — 2k¢ = constant along f line

d
=vg— along o line
ds  Pgs 8

d
— alon, line
3 gp
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Table I — The Michell solutions — stress components

¢(r,0) Orr Ogg Org
2 2 2
r2Inr 2Inr+1 2Inr+3
Inr 1/r% ol i
0 0 0 1ir?
r3cos@ 2rcos@ 6rcosf 2rsinf
r@sind 2cos@/r 0 0
rinrcos@ cos@/r cos@/r sin@/r
cos8/r —2c0s0/1° 2c0s6/r° —2sin6/r°
r3sing 2rsin@ 6rsin@ —2rcos@
r8cosd —2sinf/r 0 0
rlnrsin@ sin@/r sin@/r —cosf/r
sin@/r —2sin6/r> 2sin6/r> 2c0s0/7°
2 coca | —(n+D)(n—2)r"cosnd | (n+1)(n+2)r"cosnd | n(n+1)r"sinnd

r 2 cosng

—(n+2)n—1)r "cosnf

(n—1)n—2)r "cosnd

n(n—1)r""?cosnd

—n(n—1)r " sinnd

n(n— l)rn'2 sinnf

" cosnd —n(n—1)r" 2 cosnd

r " cosn@ —n(n+Dr "% cosnd n(n+1)r "2 cosnb —n(n+ Dr "2 sinnd
20 |+ D(n—=2)r"sinng | (n+1)(n+2)r"sinnd | —n(n+1)r" cosnd

F 42600 | —(r+2)(n=1)r"sinng | (n—1)(n—2)r "sinnf | n(n— Dr~"cosnf

" sinn@ —n(n—1r""?sinnd n(n—Dr" 2 sinnd —n(n—Dr""% cosnf
r sinng —n(n+ l)r—""2 sinn@ n(n+Dr " ~Zsinnd n{n+ l)r—"""Z cosnf
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Table II — The Michell solutions — displacement components

Forplane strin x=3-4v; forplane stress x=3—-v)/(1+V)

¢(r.6) 2Gu, 2Gug
P2 (x—Dyr 0
r2lnr (x—rinr—r K+1Dro
Inr ~1/r 0
6 0 —1/r
r3cos@ x- 2)r2 cosf (x+ 2)r2 sinf
~O5i 0.5[(x — 1)8sin0@ — cosf 0.5[(x — 1)@ cos@ —sind
+(x+1)Inrcosf] — (& + Inrsind]
0.5[(x +1)85in6 — cos@ 0.5[(x + 1)@ cos@ —sinb
rlarcosd +(k — DInrcosd] — (¢ —Dlnrsind]
cosf/r? sin@/r?
cosf/r
r3sing (c—2)r?sing@ ~(ic—2)r* cos@
r0cosd 0.5[(x —)BcosO +sind 0.5[—(x — 1)@sin @ — cos@
—(x+1Inrsinf] —(x+1)Inrcos6]
0.5[—(x +1)fcosf —sind 0.5[(x + 1)8sinb + coso
rinrsing +(k—1)Inrsinf] + (& —1)Inrcos6]
sin@/r sin@/r* —cos@/r?
2 cosng (c—n-1r"" cosng (c+n+1)r" sinng
F2 o5 nl K+n— l)r_'"‘rl cosnb —(K—n+ l)r""’+1 sinng
r" cosn@ —nr" L cosnd nrLsinng
r " cosnf ar ™ cosng ar " L sinnd
r*2 ginng (c—n—1r"sinng —(c+n+1)r" M cosnd
2 5inno (c+n—1r " sinng (x—n+D)r " cosnd
r sinng —nr" Lsinng —nr" L cosng
r~"sinnd nr " sinng —nr " cosnB

JAW//NAF
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Numerical answers to 4CQ(2011)

1. (a)
@D fa=Cun +Cpty +Cp3t5
i) B3 -T3

b) -25

pl"
2. (b) A= —A—l-
7
(c) @ =- 2Ma cos’ @
r
3.
©)
_ P
=
. zdt
@ X
__20
)
wdt
PY = Gyﬂ'dt
(ii)
cyndt
P =
N
(iid) d_P _ dth



