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Module 4M13

COMPLEX ANALYSIS AND OPTIMIZATION
Answer not more than three questions.

The questions may be taken from any section.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Attachment:
4M13 data sheet (4 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
' CUED approved calculator allowed

You may not start to read the questions
printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator




SECTION A

1 Evaluate the following integrals using contour integration. Sketch the contour that
you use and show your calculation explicitly for each section of the contour.
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2 (a) Calculate the Fourier Transform F(®) of f(x), where f(x) is given by

0 x<0
Fx) — e™ x>0
where a>0. [20%]

(b) Write down the formula for the inverse transform of F(®) and evaluate the
integral using contour integration in the complex @ plane. [80%]
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SECTION B

3 (a) Starting from the Taylor series expansion for the value of a univariate
function f(x) at a point x;,; near a point x;, derive Newton’s method, i.e. show that
successive estimates of the location of the minimum of f(x) are given by

f'(xk)

where f” and f” are the first and second derivatives of f with respect to x.

(b) An engineer is designing a cable-stayed bridge. She wants to estimate the
optimal height of the towers using the simple idealization of a single section of the

bridge shown in Fig. 1.

Tower
N
Cable
h
9 /
| |
Fig. 1

To avoid failure the tower must have a cross-sectional area At =W /o yr, where
W is the weight of the roadway and o is the maximum allowable stress in the tower,
while the cable must have a cross-sectional area Ac =W /(20 sinf), where oc is
the maximum allowable stress in the cable.

The cable has a cost per unit volume Cc, while the cost per unit volume of the
tower is Cy. The parameter d, which defines the length of the section, is fixed.

(i)  Show that the variable cost of one section of the bridge can be written
as

CcWd

ac

(2csc26 + artan8)

Csection =

Croyc

where @ = .
Ccoor
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(i) For the case where or=0.5 estimate the optimal value of 8 using
Newton’s method. Perform three iterations starting from an initial solution
6, = 0.5 radians. [45%]

(iii) By using appropriate optimality criteria find an analytical expression
for the optimal value of @ in terms of . Hence find the optimal value of 6
for the case where or=0.5 and comment on the performance of Newton’s
method observed in (ii). [20%]
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4 An engineer has been asked to design a minimum radius, horizontal, tubular
tension rod of fixed length L to transmit a defined load P. The design of the rod is
shown schematically in Fig. 2. The inner radius r; and the outer radius r, can be varied

to optimize the design.
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The maximum load the rod can transmit without yielding is ©, n’(roz - riz) where
0, is the yield stress of the material from which it is made.

The requirements specification for the rod stipulates that its maximum central

5pgL? :
——% must not exceed 0.001L. Here g is
96E(ro +7 )

the acceleration due to gravity, while p and E are, respectively, the density and Young’s

deflection under self-weight &, =

modulus of the material from which the rod is made.

(a) Show that the task of optimizing the design of the rod can be cast in the
form
Minimize

Subjectto g, =K;— (roz - rl-z) <0
82=K2—(r02 +ri2)S0
§3=r—1,<0
84=-1r<0
and find expressions for K| and K. [15%)]

(b) For the case where P=50kN, L=2.5m, oy = 200 MPa, E=200GPa
and pg=77 kKNm™, identify the feasible region graphically. By superimposing

contours of the objective function, identify which constraints are active at the optimum,
and hence find the optimal values of r; and r, for this design problem. [35%]
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(c) Confirm your results to (b) by considering the possible solutions obtained
using the Kuhn-Tucker multiplier method. There is no need to include consideration of
constraints known to be inactive at the optimum.

(d) If the engineer wants to reduce the radius of the rod further by changing the

material from which it is made, which constraint would it be more beneficial to try to
relax?

END OF PAPER
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4M13
OPTIMIZATION
DATA SHEET

1. Taylor Series Expansion

For one variable:

f) = £6H) + x=x) N + 2= G +R

For several variables:

FG = £+ VT x-x) + Lax-xHTEE) (x-x) + R

where
o o’
dx, ax12 " 9x Ox,
gradient Vf(x) = | : and hessian H(x) = V(Vf(x)) = : o
KA of of
9%, dx ox,  ox’

H( x*) is a symmetric nx#» matrix and R includes all higher order terms.

2. Golden Section Method

A
f(x) (a) Evaluate f(x) at points 4, B, C and D.
Ax _ d-Ax

d—Ax d (b) If f(B) < f(C),new interval is4 - C.

Ax _ 0.382 If f(B) > f(C), new interval is B — D.

If /(B) = f(C), new interval is either

d=1I} A—Cor B-D.
I Y (c) Evaluate f(x) at new interior point. If
' not converged, go to (b).
Ax Ax
A B C X
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3. Newton’s Method
(a) Select starting point x;,
. . . -1
(b) Determine search direction d, = ~H(x,)” Vf(x,)
(¢) Determine new estimate x, ., = X, +d,

(d) Test for convergence. If not converged, go to step (b)

4. Steepest Descent Method
(a) Select starting point x,

(b) Determine search direction d, = —Vf(x,)

T
d ' d
(c) Perform line search to determine step size @, or evaluate o, = __kk
T
) ) ~ d, H(x,)d,
(d) Determine new estimate x, | = x,+ ¢ d,
(e) Test for convergence. If not converged, go to step (b)
5. Conjugate Gradient Method
dOTdO

(a) Select starting point x,, and compute d, = -V f(x,) and ¢¢y = ————
& 0 0 0 0 d()T H(Xo) do
(b) Determine new estimate x,  ; = X, + 0, d,

[W(ka)qz
V)]

(d) Determine search directiond, ., = = Vf(x, ) + B,d,

(c) Evaluate Vf(x, .,)and f§, = {

T
d V()
T

dp g H(x, ) d

(f) Test for convergence. If not converged, go to step (b)

(e) Determine step size o, | = —

6. Gauss-Newton Method (for Nonlinear Least Squares)

If the minimum squared error of residuals r(x) is sought:

Minimise f(x) = i 2x) = r(x) r(x)
i=1

(a) Select starting point x;

(b) Determine search direction d, = —| J(xk)TJ(xk) ]—1 J(x,) Tr(xk)
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Vrl(x)T dx, ~ ox
where J(x) =

vrm(x)T or, or,.
a_x1 T o9x

(c) Determine new estimate x, ;| = X, + d,

(d) Test for convergence. If not converged, go to step (b)

. Lagrange Multipliers
To minimise f(x) subject to m equality constraints 4,(x) = 0,7 = 1, ..., m, solve the sys-
tem of simultaneous equations
* %, T .
Vf(x )+ [Vh(x )]"A =0 (nequations)
h(x*) =0 (m equations)

where A = [, ..., 4] T is the vector of Lagrange multipliers and

on,  oh

_8;1 see 'E—xT
[Vh(x)] = [Vhl(x*) th(x*)} = | :

on,  dh

. Kuhn-Tucker Multipliers
To minimise f(x) subject to m equality constraints /,(x) = 0, i =1, ..., m and p inequal-

ity constraints g(x) < 0,7 =1, ..., p, solve the system of simultaneous equations

VA() + [VRGH) 1A + [Ve(x*)1'n =0 (n equations)
h(x* ) =0 (m equations)
Vi=1,..,p, 4g(x)=0 (pequations)

where A are Lagrange multipliers and p = 0 are the Kuhn-Tucker multipliers.

20/10/02
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9. Penalty & Barrier Functions
To minimise f(x) subject to p inequality constraints g(x) < 0,i=1, ....p, deﬁné
9(x,p) = f(x) + p, P(x)
where P(x) is a penalty function, e.g.

p
P(x) = Y (max[0, g(x)1)*

i=1

or alternatively
' 1
q(x,p;) = f(x) —FkB(X)

where B(x) is a barrier function, e.g.

P

I
B(x) = X -7y
(x
= &)
Then for successive k = 1,2, ... and p, such that p, >0 and p,_, > p,, solve the prob-

lem

minimise g(x, p,)
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