
ENGINEERING TRIPOS PART lIB 2012 


MODULE 4A9 - MOLECULAR THERMODYNAMICS 


SOLUTIONS 


1. (a) The four flow regimes are: 

Continuum flow (Kn < -0.01). N-S equation with no-slip wall boundary condition is valid. 


Slip flow (-0.01 < Kn < -0.1). N-S equation with a slip wall boundary condition is valid. 


Transition flow (-0.1 < Kn < -5). N-S equation not valid. 


Free-molecule flow (-5 < Kn). N-S equation not valid. [20 %] 


(b) 

y 

y l 

[10 %]y=O 

Assume molecules make their last collision before striking the wall at y A. The velocity 

gradient is continued through the free-molecule region to the wall, thus defining Uslip. 

Flux ofx-momentum carried to the wall by the incident molecules pC ( du J [5 %]4 Uslip +l dy 

For diffuse reflection, the flux ofx-momentum carried by the reflected molecules is zero. 

In the continuum region the net x-momentum flux to the wall equals the shear stress r. 

Hence, 


du pCldu
r = f.l- --- [5 %]

dy 2 dy 

Equating the two expressions for the flux ofx-momentum gives, 

pC (U I" + l du J= pCA du l (du J [5 %]
Uslip =4 SIp dy 2 dy dy y=O 

U Continuum 

Free-molecule 

Flow velocity 
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(c) Applying the force-momentum principle to the control volume shown gives, 

rdp
T =-- [5 %]

2dx 

This is valid irrespective of the flow regime. In the central, Navier-Stokes, region we have, 

du rdp
T = J,l- = -- [5 %]

dr 2 dx 

This is valid across the tube if we apply the slip boundary condition (compensating for the 
free-molecule layer near the wall). Integrating with respect to r subject to U = Uslip at r R, 

[10 %] 


From part (b), noting thaty = R - r, 

[5 %] 


Thus, 

[5%] 

Noting that Kn )J2R we obtain the velocity profile, 

[5 %] 


(d) If P is the density, the mass flowrate is, 

4 
1C P (_ dP ) [(1+4Kn)R _ R4] [15 %] 
211 dx 2 4 

The continuum result is obtained by setting Kn O. Hence, 

= (1 + 8Kn) [5 %] 
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Examiners' note: 
In the first (descriptive) part of the question, many candidates had only a hazy idea about the 
characteristics of the different non-continuum regimes although all were able to derive the 
expression for the slip velocity at a solid boundary. Quite a large proportion then managed to 
work successfully through calculating the velocity profile and mass flowrate in pipeflow in 
the slip regime. 
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2. (a) (i) The kinetic temperature TK of a monatomic gas is defined by the relation, 

[5 %]rv1.ean translational KE of a molecule = 

(ii) The kinetic temperature of a diatomic molecule is defined in precisely the same 

way. The rotational and vibrational energies do not enter into the definition of temperature. [5 %] 

(b) (i) The mixture is at equilibrium. By the principle of the 'equipartition of energy' 

the mean translational KE ofthe N2 and He molecules are the same. Hence, 

3kT 3RT 
2 2 

where m is the mass of a molecule and M is the molar mass. Hence, 

1323 m.s- l [15 %] 

(ii) The initial temperature of the mixture is given by, 

2
T[ = M N2 C~2 = __2_8_X_5_0_0___ [5 %]= 280.6 K 

3R 3x8.3143xl000 

At 280.6 K the rotational but not the vibrational states of the N2 are activated. 


Hence, by the principle of the equipartition of energy, the constant volume molar heat 


capacities of the two gases are, 


- 3- (3 2{ 5C = -+- =-R Cv,He = "2R [10 %]
v,N2 2 2 2' 

The constant volume molar heat capacity for the mixture is, 

0.01 + 0.03Cv,He 0.01x5/2 + 0.03x3/2 7
C = ------'--=------ = - x 8.3143 kJ/kmoLK [10 %] v 0.04 0.04 4 

The rise in temperature, and the final temperature, of the mixture are, 

__Q==~ = ______5_0______AT = = 85.9 °C TF = 280.6 + 85.9 = 366.5 K [5 %]
0.04C 0.04x(7/4)x8.3143v 

Note that the final temperature is such that the vibrational states of the N2 remain inactive so 

that the above theory is valid. Finally, the rms velocity of the helium molecules is, 
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(C) - (3RTF J1I2 _ (3X8.3143XI000X366.S]1I2 IS 
He RMS - -U - 4 = 12 mls 

He 

( c) As the gas is monatomic the only form of energy is translational kinetic energy, 

E = m(Ct +ci +C}) 
2 

where m is the mass of a molecule. To prove the principle of the equipartition of energy we 

take Q = mCt 12 in order to find the Xl component of the mean translational kinetic energy 

of a molecule (and then Q = mCi 12 and Q = mC} 12 ). Thus, 

- ml n I I I E = -- ex --- ex --- ex --- dCdC dC 
1 

00 00 "" C 
2 

[ C 
2 J [ C 

2 J [ C 
2 J 

I n III 2 (21tRT)3/Z p 2RT P 2RT P 2RT 1 2 3 

To simplify, we define Xl = cll .J2RT, X2 = czI ..J2RT, X3 = c 31 .J2RT and hence 

dxl = dCII .J2RT, dx2 = dc2 1 .J2RT, dx3 = dc31 .J2RT . Substituting, we obtain, 

E m RT ""J ""J ooJ z -xl -x~ -xl dx dx dx 
I 3/2 Xl e eel z 3 

11: -00 -00 -00 

_ mRT ""J -x1dx ooJ - x1 dx ""J Z -xfdx - e 3 e 2 Xl e 1 

Using the given integrals and k = mR (where k is Boltzmann's constant) we find, 

mRT kT 
=--=-

2 2 

Hence, the XI component of the mean translational kinetic energy of a molecule is kT/2. 

Clearly, the same result will be obtained for the X2 and X3 components. 

The total mean translational kinetic energy of a molecule is therefore 3kT /2 as expected. 

[5 %] 

[10 %] 

[10 %] 

[15 %] 

This proves the principle of the equipartition of energy for a monatomic gas at equilibrium. [5 %] 

Examiners' note: 

All the candidates could recite the definition of kinetic temperature for a monatomic gas and 

very few fell into trap of thinking that it was defined differently for a diatomic gas. However, 

many had difficulty with calculating the effect of heat addition. The last part on the 

equipartition principle was done quite well, with most candidates coping with the tricky 

triple integral. 
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3. 	 (a) The wave function must be single-valued and therefore have the same value 

when $ = $0 , $0 + 21t, cJ>o + 41t ... This is only possible if: 

81t21£ JI12 = n 
where n = 1,2,3, ... (not zero) ( h2 

2h 2n	 [20 %] 
E = 81t 21 

(b) 	 (i) a is a symmetry factor which is 1 for hetero-nuclear and 2 for homo
nuclear molecules. 

= 

(ii) 	 Zrot Lgm exp(-Em I kT) 
m=O 

= 1 	 . 
= L -(2m + l)exp(-(m2 + m) 

h
2 

2 

) 
m=O a 81t IkT 

= 1 	 e 
= L -(2m+ l)exp(-(m 2 + m)--L£!..) 


111=0 a T 


("') 	 e h 
2 

b' . [20 %] 
111 rot =-2- Y InSpectIOn. 

81t lk 

(c) 	 For er()I« T, the summation may be replaced by an integral. 

= I 
Z t -;:;; I-(2m + l)exp(-{m" + m}8rot IT)dm 

ro a 
o 

=--llr-exp(-{m~T J +m}erot IT) J'= 
a e	 [)rot 

T 
= aemt 

U = NkT2 xl NkT 
rot T 

k 
u = = T=RT [where m is mass of a molecule here] 

rot Nm m 

i.e., rotational modes contribute R to Cv • [60 %] 

0) accurate for N 2 ; (ii) not so accurate for H2• This is because, due to the low 
moment of inertia, the characteristic temperature of rotation for hydrogen is quite high 
(about 87 K), whereas for nitrogen it is less than 3 K. 
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Examiners' note: 
The first two parts of this question were, in general, done well. Most marks were lost in the 

last section on the rotational partition function since many students failed to realise that the 

summation expression can be written as an integral in the high temperature limit. 



4. (a) (i) True. The entropy increases since the temperature is constant but the 

volume increases. The number of microstates therefore also increases. [Explanations in 

terms of the number density of translational energy states increasing with volume would also 

be acceptable.] 

(iii) False. Each 'squared term' for the molecular energy states contributes R/2 

to cv and there are 3 translational terms of this type. At sufficiently high temperature, 

electronic excitation contributes nothing to Cv since all molecules will be in the excited state 

(Ze/ = 1). The correct statement is therefore that at sufficiently high temperature Cv = 3R12. 

(b) q, -S'I k = xlnx+ ylny+ dnz 
where x, y, z are the probabilities of the three microstates. We wish to minimize 
q, subject to the constraint: 

x+ y+z= 1 or dz = -(dx+dy) (A) 

Thus, 
d¢J = (1 + In x)dx + (1 + In y)dy + (I + In z )dz 

=In(x)dx+ In(y)dy-In(l-x- y)(dx+ dy) 

In( 1-;- y )dx+ In( 1-~'- y )dY 

Since dx and dy are independent and arbitrary, dq, is only zero if the two log terms are 
simultaneously zero. Thus, 

x=l-x-y (8) 

y 1 x- y (C) 

Simultaneous solution of A, 8 and C gives x y = z = 113, and so 

] 

S' = -k x L(1I3)x 1n(l/3) kln3 
i=1 

[Alternatively, this can be shown more succinctly and generally using Lagrange multipliers, 
as in the notes.] 

(c) U=E= ~ 
[I~ PE 


dU = L EjdP; +L P;dEj oQ - oW 


S'=-k~ P lnPNow ~, , 

dS' =-kL(1 + lnp;)dp; = -kL(l- Ei / kT -lnQ)dp; 

dS' = ~ LEidP; = °i (since LdP; =0) 

[10 %] 

[15 %] 

~~ 

[35 %] 
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Examiners' note: 
First part: most students recognised that the entropy (and hence the number of available 
microstates) increases for a gas undergoing isothermal expansion, though some took 
"reversible" to imply isentropic. The equipartition principle, however, was misapplied, so 
that most thought that electronic excitation would contribute RI2 to cv • Second part: it seems 
that students have responded to the examiners' note in the 2010 crib, and most applied 
Lagrange multipliers correctly in this section and thereby obtained full marks. Third part: 
this concerned the statistical interpretation of heat and work transfer in terms of energy 
levels and their probabilities. Many students went off at a tangent, despite a very similar 
analysis in the notes. Some provided near-perfect solutions, however. 

AJW I JBY 
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