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Ql crib a) Far field region = Focal plane ofa positive lens = FT {Hologram} 
The lens introduces the quadratic phase distortion term in front of the transform. This can lead to a 
smearing of the Fourier transform and must be corrected for in compressed optical systems. There are 
several methods used to correct the phase, such as adding further lenses close to the focal plane or a 
compensating hologram to counter the phase distortion. 
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Aperture 

If the aperture is placed a distance d behind the lens, then there will be a corresponding change in the 
phase distortion term of the Fourier transform. 

jk l' d 1(, , ) jk (- 1-- I a-+p- - ax+py) 

E(a,p)==e 2f f) JJA(x,y)ef dxdy 
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From this equation we can see another way of removing the phase distortion. If the distance is set so 
that d then the phase distortion is unity and we have the full Fourier transform scaled by the factor 
of the focal length,f 

b) We normally assumed# that the illumination of the hologram is uniform and that the hologram and 
lens extend to infinity. This is not the case in reality, as there are a finite number of hologram pixels 
creating an aperture over the hologram and the light used to illuminate it will not be uniformly 
distributed. The illumination source is a collimated monochromatic laser which generates high quality 
parallel wavefronts with a wider diameter than the hologram or the lenses. Such a source will usually 
have a intensity distribution which can be expressed as a Gaussian beam profile or function. 

II x 2 +yZ I 
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[f a lens is illuminated with a collimated Gaussian source, then the focal plane will also contain a 
Gaussian profile which is scaled by the focal length. The actual structure of the replay field of a 
hologram is even more complex, as the Gaussian beam profile of the source is also apertured by the 
hologram and lens leading to sine like sidelobes on the Fred Gaussian profile. The input illumination 
distribution g(x,y) times the hologram aperture d(x.y) times the total aperture of the FT lens (if it has a 
smaller diameter than the hologram) p(x,y). Hence effect of the FT on these functions results in a 
convolution oftheir transforms. 

F(u, v) == G(u, v) ® D(u, v) 0 p(u, v) 
The ideal hologram replay field H(u,v) is designed as an array of delta functions in desired positions. 
The lens aperture p(x,y) is a large circular hole, so the FT P(u, v) will be a first order Bessel function 
(like a circular sinc function). The hologram aperture is a large square of size NA and its FT, H(u, v) 
will be a sharp sine function. The effect of the FT of the illumination G(u. v) is to add a Gaussian 
profile. Hence, they will be delta functions convolved with a Bessel function convolved with a sinc 
function convolved with a Gaussian function. Spots which are pLaced next to one another will interfere 
due to the tails of the Gaussian, sinc and Bessel functions and the individual desired sharp 'spots' 
become ringed blobs with finite width. 
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H(u, v) D(u, v) G(u, v) 
The result of this convolution process are sidelobes spread across the replay field from all of the points 
including the zero order. In the application of fibre to fibre switching, the number of CGH pixels is 
finite and forms an overall aperture, which leads to sinc or Bessel sidelobes on the individual spots. 
These effects lose power into the side lobes and cause the spot to be broader than the original source 
fibre, leading to poor fibre launch efficiency. The sidelobes are also a source of crosstalk into 
neighbouring fibres and limits the spacing between channels. It is also a serious problem with the zero 
order as its sidelobes can be very large and means that crosstalk will be worse the closer to the centre 
of the replay field you go. In holographic projection this means that adjacent spots will result in 
interference between the spots and the neighbouring sidelobes, causing uniform areas of the image to 
have a non-uniform overall structure. 

c) The manipulation of spatial frequencies in the replay field implies that the wavelength is held 
constant, however the spatial frequency is also a function of wavelength A.. Hence in Fourier 
holograms, spatial and wavelength properties are interchangeable. 
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If a hologram or grating is created to generate fixed positions or orders in the replay field, then if the 
wavelength is varied, then the positions of the orders from the hologram will vary. This is known as a 
wavelength sensitive or dispersive hologram or grating. Ifwe change the pitch of the grating/hologram, 
then the position of the spot generated by the grating will sweep across the far field. If we have a 
multiple wavelength input source illuminating the grating then each wavelength has a different angle of 
diffraction and will lead to a different position in the far field. Hence the linewidth is converted into a 
physical broadening of the spots generated in the replay field, similar to that seen by apodisation. This 
leads to problems with launch efficiency and also to the possibility of crosstalk between the different 
fibres. 
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Wavelength and position will vary with the grating pitch in the far field. Ifwe monitor a fixed point in 
the far field, then the wavelength will scan across that point with the changing pitch, making a 
wavelength selective filter. If the grating/hologram pitch, were increased as an integer, we would only 
have a small number of fixed wavelengths that could be tuned. However, by using one dimensional 
holograms, we can select any point in the output plane along the single axis which means we can select 
a range of angles and hence a range of wavelengths. 
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d) The three wavelengths can be combined to create the gamut for a single colour image time 
sequentially. Each laser wavelength illuminates a separate hologram and forms the corner of a 
triangular region on the CIE colour map. As laser sources are monochromatic, they occupy positions 
very close to the edges of the CIE colour map, hence the triangle generated by the RGB laser 
wavelengths will be larger that those generated by traditional image projectors (such as those seen with 
arc lamps and LEDs). As the CIE colour gamut is larger, then the number of colours generated 
(proportional to the area of the CIE triangle) will also be much larger. Hence the colours will be better 
with increased hue, chroma and saturation. The problem is that the size of each replay field generated 
by each hologram will be different due to the scaling being different for each wavelength. Ifwe assume 
the green (532nm) wavelength is the correct size, then the image generated by the red hologram must 
be reduced in size and the image from the blue hologram must be increased. This is done by scaling the 
target images used to calculate the replay field for each hologram by the required correction factor. 

j)-I j)-2 aIM .,1.2
aIM =--=a2M=-- ~ 

~ ~ AIa 2M 
Hence the red correction will be (532/650 = 0.818) and the blue (532/410 = 1.298) 

Q2 a) The nematic phase is the least ordered meso phase before the 
isotropic. The molecules have only long range order and no longitudinal 
order. This means that the molecules retain a low viscosity, like a liquid, 
and are prone to flow. The anisotropy in the shape of the calimatic 
molecules leads to a dielectric anisotropy which is represented by a pair of 

dielectric constants, Gperp and Gpara. The total dielectric anisotropy ~G is 

defined as the difference between the two. It is important to note that can be 
both positive as well as negative (vertically aligned nematic (V AN) 
devices). Molecules with a negative ~G behave in the opposite way electrically to those with a 

positive ~G . The existence of this dielectric anisotropy means that we can move the molecules around 
by applying an electric field across them, combined with the flow properties means that a nematic 
molecule can be oriented in any direction with the use of an electric field which leads to their ability to 
perform greyscale modulation of the light. 

Molecular 

director 


indicatrix 

The calimatic molecular shape also leads to an optical anisotropy in nematic LCs, with the two axes of 
the molecule appearing as the refractive index. The refractive index along the long axis of the 
molecules is often referred to as the extraordinary ne (or fast n,) and the short axis the ordinary no (or 

slow ns) axis. The difference between the two is the birefringence. ~n =ne - no 

Reflective / Mirror 

"--iiiiiiiiiiiiiiiiiiiiiiiiiii 
The optical anisotropy means that we can effectively rotate the axes of the indicatrix as the molecules 
move, creating a moveable wave plate or optical retarder. This along with polarising optics makes the 
basis of phase modulation. If we have an optical indicatrix oriented at an angle of (J to the plane of the 
cell (usually this corresponds to the plane with the glass walls and ITO electrodes), then we can 
calculate the refractive index seen by light passing perpendicular to the cell walls. We can then 
calculate the retardance r of the liquid crystal layer for a given cell thickness d and wavelength Ii. 

[' = _21r_d----'.(n_(,--O)'---_n--'-o) 
A 



• • 
• 

• 
• 

• 
• 

We can now use this expression in a Jones matrix representation of the optical LC retarder to get the 
optical characteristics of the LC material. In the case of nematic LC materials, there is little restriction 
on the flow properties of the material, hence it is possible to continuously vary r through several 
rotations of 1r providing a thick enough cell. The main drawback of these materials is due to the fact 
that the flow of the material means that the speed of the modulation is often very slow (IO's ofmsec to 
seconds). It is by definition an out of plane electro-optical effect. 

b) One of the main limitations of nematic LCs is that they are inherently polarisation sensitive when in 
the planar geometry. This comes from the fact that the optical anisotropy is only in two dimensions 
and the planar orientation is an out of plane effect. 
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When seen from above in the OV state, light polarised parallel to the long axis of the molecules sees ne 
and light perpendicular sees no. When the LC is switched into the homeotropic state by the applied 
electric field, the light polarised parallel to the long axis of the molecules now sees no but the light 
perpendicular still sees no. Hence one polarisation is phase modulated, while the perpendicular 
polarisation is not. 

The effects discussed above is the planar effect, where there is just the simple angle 8 with respect to 
the cell walls. Because the nematic LC molecules are free to rotate in any position, it is possible to 
make more complex geometries such as twisted structures. In these devices, the molecules follow a 
twisted or helical path often rotating through an angle of 90° as is the case with twisted nematic or TN 
displays. This reduces the polarisation dependence as both polarisation states will see a change in 
reflective index when the LC material is switched, however it is not fully polarisation insensitive as 
each polarisation direction will see differing degrees of phase modulation. There is no twisting 
direction that will solve this inequality between the two polarisation states. 

c) For a quarter waveplate, r = 90 degrees and /f/= 45 degrees. 

d) Multiple passes through a cell with waveplate optics is required to make them insensitive. The NLC 
is aligned parallel to the vertical (y) axis. 



The vertical component will pass through the NLC and be fully phase modulated before passing 
through the QWP and being reflected back again. The two passes through the QWP are effectively the 
same as passing through a HWP with the same orientation of 45 degrees tot he vertical 

QWP(two passes) = ~ [ 1. 
...;2 -) 

- jJ ~ [ 1. 
1 ...;2 -) 

- jJ = [ 0. 
1 -) 

- jJ° 
For vertical light in the result of the QWP will be: 

[_OJ -:J[~J =[- ~VJ 
Which is horizontally polarised and so will not see the phase modulation on the return pass back 
through the NLC. For horizontally polarised light, process is reversed, there is no modulation from the 
NLC on the pass in, then the QWP: 

[_OJ -:J[~J = [ - ~VJ 
Hence the light is now vertically polarised and will see the NLC phase modulation on the way back out 
of the cell. 

Thus both states are modulated in the same way by the NLC on each pass through the cell giving a 
polarisation insensitive phase modulation. 
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Plane 1 is the input plane with reference and object place side by side. This is usually done optically 

using a liquid crystal spatial light modulator. 

Plane 2 Is where the joint power spectrum (JPS) is formed via a Fourier transform. This is done 

optically with coherent illumination and a lens. 

Plane 3 is the non-linearly processed JPS. This can be a simple square law detector like a CCO or 

CMOS camera and a second LC SLM. Or it can be an optically addressed SLM (OASLM). 

Plane 4 is the output plane formed by another FT lens. This image is usually grabbed by a CCO or 

CMOS camera. 


b) In plane 1, the input s(x,y) and reference r(x,y) are displayed side by side in an optical system and 

then transformed by a single lens into plane 2. 


The nonlinearity between planes 2 and 3 creates the correlation and in its simplest form can be 
modelled by a square law detector such as photodiode or CCO camera which takes the magnitude 
squared of the light falling upon it. 

2 ( ) 2 ( ) ( ) ( ) -j21r(X2U-(Yl+Y2)V) ( ) ( ) -j21r(-X2U+(Yl+.vz)V)S U,V +R u,v +S u,v R u,v e +S u,v R u,v e 



The final plane 4 is after the second FT, with the central DC tenns proportional to FT [R2 + S] and the 
two symmetrical correlation peaks spaced by (X2' -(y,+y2Y) and (-X2' y,+y2Y. 

c) The JPS of the input now has three components 

After the square law non-linearity we now have: 

P 2( ) + S2(u, v) R2( ) + S(u, v)R'( ) -J2Jl'(X2U-(Yl+Y2)V) S·( )R( ) -J2Jl'(-X2U+(Yl+Y2)V)
U, v + u, v u, v e + u, v u, v e 

•( ) -J2Jl'(X3U-(Yl+Y3)V) • ( ) ( ) -J2Jl'(-XJU+(Yl+Y3)V)
+p (u, v) R u, v e + P u, v R u, v e 

•( ) -J2Jl'((x,-x3)u-(Yz-YJ)v) • ( ) ( ) -J2Jl'(-(X2-XJ)U+(Yz-YJ)v)
+S (u, v) P u, v e + S u, v P u, v e 

This plane not only contains the desired RS and RP correlations, it also contains the unwanted cross 
correlations of P and S which could be as strong or even stronger than the other pairs, leading to 
incorrect identification of possible correlation peaks. 

If P and S match R, then all peaks will be present, hence the extra PS peaks can be eliminated, however 
if P matches S, then the PS cross correlation will be incorrectly recognised as an SR correlation. 

If the unknown input image is displayed and the reference image removed, then the PS correlation will 
be the only peaks present. If this plane is stored and then R is added to the input, then the PS error 
peaks can be removed by subtracting the stored plane from the one with R included. 

Q3 a) First consider the electric field amplitudes of the two anns, E, and E2: 

EI (z) = AI exp j(jJz + f1¢) 

E2(Z)= A2 expj(jJz) 

where E, and E2 differ from each other only by the phase shift !:lrjJ induced in ann I. The total electric 
field amplitude Elo/ when the two anns recombine is simply the sum of the upper and lower values: 

E/ol =EI +E2 

The power output per unit area (POUI) is the same as the intensity. To calculate this, we multiply E by 
its complex conjugate: 

As the recombining Y -junction has symmetric geometry for a 3dB splitter, then the field amplitudes in 
the two anns are equal: 

Making the appropriate substitutions above, we can therefore express the total optical power output as: 

!>"UI = [A exp(jjJz)exp(jf1¢) + A exp(jjJz)] x [Aexp(- ijJz)exp(- if1¢) + Aexp(- ijJz)] 


!>"UI = [A exp(jjJz )exp(jf1¢)+ A exp(jjJz )]x [A exp(- ijJz )exp(- if1¢) + Aexp(- ijJz)] 


Using the following identity: cosO =.!..[exp(jO)+ exp(- iO)]
2 

and simplifying, then gives the required result: 



(Note that A is not defined in the question, and in this solution is the amplitude of each of the two anus, 
Students may instead define A as the amplitude of the combined input beam, in which case their final 
answer may differ by a factor of4). 

b) The cleaved interferometer now acts as a source of Young's fringes. Before the induced index 
change, maxima are therefore located where the formula d sin 0 =nl/, is satisfied (the zeroth order 
being found at 0°). After the induced index change, the position of the maxima can be found where: 

d sin 0 - fln . D = nl/, (note the additional retardance caused by the index change) 

Rearranging for the index change, and using n = 0 for zeroth order, gives: 

fln =dsinO 
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Substituting values, fh.= to, D = 100 ~m, d= 4a = 20 ~m, gives us: tln = 3.49 x 10,3 
Expressed as a percentage of the original index (1.500), this gives us a change of 0.233 %. 

c) The optical power per unit area (intensity) in the core is given by: . 
~ore == Ecore • Ecore 


~ore = Asin(K,x)exp(- jpz) X A sin(K, x)exp(}Pz) 


~ore = A2 sin2 (K1X) 

The total power per unit area contained within the core is therefore given by: 

'L~ore = 
a 

fA2 sin2(K,x)dx 
-a 

A similar expression can be obtained for the total power per unit area in the cladding: 

~/adding = Ec/adding . E;{adding 

=Bexp(- K 2X )exp(- jPz)x B sin(- K 2X )exp(jpz) 
=B2 exp(- 2K2X) 

00 -a 

'L~/adding = fBz exp(- 2Kzx)dx + f B2 exp(- 2KzX)dx 
a -00 
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We now have our 2 expressions, and for the final part we need to find the following ratio: 

We know every term in this expression except A and B, which we must now eliminate. We do this by 
considering that the electric field amplitude must be continuous at the core-cladding interface. We can 
therefore write down the following expression: 

Ecore(x::; a) Ecludding(X =a) 

Asin(Kta) =Bexp(-K2a) 


A= Bexp(-K2a) 

sin(Kra) 

Substitute this expression for A in the power ratio expression above to give: 

K2(a - sin(2Kra )J 
2KI 

](/ and](1 are defined in the question as: Kl k~nil - n~ and KI k~n;tf - ni ' and k = 2n:/A. 

Substitute the values: a = 5 11m, nl = 1.500, n: = 1.498, neJ!= 1.499, A. 1330 nm, gives us: 

"E.~/adding 

"E.?oore 

which when expressed as a percentage is 0.040 % 

Well answered Basic book work with a few twists. All coped with diffraction and linewidth. 
Quite afew got the colour corrections wrong. Long question. 

A liquid crystal question, some of the basic theory was a bit lacking. Surprisingly few could 
~2.: do the complex numbers for the Jones matrix but quite a few got the final part on QWP .. 

Disappointingly avoided question as it was a very good one, well structured and quite 
doable. This section was easy to 'bin' and so suffered this year. 

This question was still a little too easy as it resembled past questions. It was well answered 
and overall the understanding was very gOod. 


