Solutiais
1.(a) Section Profertis

$$
A=7 m^{2} \quad I=6 m^{4}
$$

$$
\begin{aligned}
& y_{t}=-1.2 \mathrm{~m} \Rightarrow z_{t}=-6 / 1.2=-5 \mathrm{~m}^{3} \\
& y_{v}=2.7-1.2=1.5 \mathrm{~m} \Rightarrow z_{L}=-6 / 1.5=+4 \mathrm{~m}^{3}
\end{aligned}
$$

Eccartirecits of tondors.
Mean defte of tenders $=0.2 \mathrm{~m}$ below top futio

$$
\therefore \quad e=-1 m
$$

Tof filve stren $=\frac{P}{A}+\frac{P_{e}}{Z_{t}}$

$$
=\frac{36000}{1000}\left(\frac{1}{7}+\frac{(-1)}{(-5)}\right)=12.3 \mathrm{MPa}
$$

Bottom fitre stres $=\frac{P}{A}+\frac{P_{e}}{Z_{0}}=\frac{36000}{1000}\left(\frac{1}{7}+\frac{(-1)}{4}\right)=\frac{-3.85 \mathrm{MPa}}{(30 \%)}$
(b) $\left[\begin{array}{ll}\int \beta_{1}{ }^{2} & \int \beta_{1} \beta_{2} \\ \int \beta_{1} \beta_{2} & \int \beta_{2}{ }^{2}\end{array}\right]\left[\begin{array}{l}Q_{1} \\ Q_{2}\end{array}\right]=\operatorname{Pes}\left[\begin{array}{c}\int \beta_{1} \\ \int \beta_{2}\end{array}\right]$
β_{1}

Boahwark to get LH.S. integrab
$\operatorname{Pes}_{s} \int \beta_{1} \quad$ Only need to consider area whee tendons are

$$
\begin{aligned}
\therefore \int \beta_{1} & =\left(\frac{1+0.666}{2}\right) 10+\left(\frac{1+0.77}{2}\right) 10 \\
& =17.22
\end{aligned}
$$

C B_{2} bliss came by syonulis

$$
\frac{1}{6}\left[\begin{array}{cc}
2(30+45) & 45 \\
45 & 2(30+45)
\end{array}\right]\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]=36000 \cdot(-1)\left[\begin{array}{c}
17.22 \\
17.22
\end{array}\right]
$$

Could woe as sumillaieas equations but note that symmetry means $Q_{1}=Q_{2}$

$$
\begin{aligned}
\therefore 150 Q+45 Q & =-36000 \cdot 17 \cdot 22 \times 6 \\
\Rightarrow Q & =-17070 \mathrm{kNm}
\end{aligned}
$$

\therefore Secondary manas are

(c) Stresses in top filve caned by secondary moves are $\frac{-19070}{-5 \cdot 1000}=+3.8 \mathrm{MPa}$

Bottom fibre $\frac{-19070}{+4.1000}=\underline{ } \quad[10 \%]$
Gamines's comment:
Q1. Secondary Moments. Simplified version of Hammersmith Bridge Repair. Intended to be straightforward but required thinking. With constant eccentricity the integrals did not need Simpson's rule, and the symmetry meant that there should have been no need to solve simultaneous equations The least nonular question and only two got close to the right answer.
2.
(a) The range of moments that the beam must carry at mid-span is purely related to the live load, not the fixed dead loud

Thun $\frac{q L^{2}}{8} / f_{c}=\frac{l-d^{2}}{6}$
But, $G_{d p}=\omega$

$$
\begin{equation*}
\therefore \quad \frac{6 q \rho L}{8 f_{c}}\left(\frac{L}{d}\right)=\omega \tag{1}
\end{equation*}
$$

$$
[25 \%]
$$

(b) Magnel diagram

Consider the turo strass lunits which munt aphly at the $1 / p_{\min }$ condition

Top fetre, tencis streses, munumim monent

$$
\begin{align*}
0 & =\frac{P}{A}+\frac{\rho_{e}}{Z_{t}}-\frac{M}{Z_{t}} \\
& =\frac{p}{l-\phi}-\frac{\rho_{e} 6}{t-d^{2}}+\frac{w L^{2}}{8} \cdot \frac{6}{l-d^{2}} \tag{2}
\end{align*}
$$

$$
\text { N.B. } \underline{z_{t}-v e}
$$

$[10 \%]$
Botton Gilve, tencion stresses, maxuivin manat

$$
\begin{align*}
0 & =\frac{P}{A}+\frac{\rho_{e}}{Z_{L}}-\frac{M}{Z_{w}} \quad Z_{l} \text { tve } \\
& =\frac{P}{b-d}+\frac{\rho_{e} b}{6-d^{2}}-\frac{(\omega+q) L^{2}}{8} \frac{6}{6-d^{x}} \tag{3}
\end{align*}
$$

$[10 \%]$
Solve (2) \& (3) to bind P \& e.
Acd:

$$
\begin{align*}
0 & =2 p-\frac{q L^{2} 6}{8 d} \\
\Rightarrow \quad p & =\frac{3 q L^{2}}{8 d} \tag{4}
\end{align*}
$$

(4) $\Rightarrow(2)$

$$
\begin{align*}
& 0=\frac{3 q L^{2}}{8 d}\left(1-\frac{6 e}{d}\right)+\frac{w L^{2} 6}{8 d} \\
& \Rightarrow e=\left(\frac{6 w}{3 q}+1\right) \frac{d}{6} \tag{5}
\end{align*}
$$

(could subtitute brom (1) here)
(c) Fin e as $0.4 d$

From (5)

$$
\begin{aligned}
& 0.4 d=\left(\frac{36 q p L}{8 f_{c} \cdot 3 q}\left(\frac{L}{d}\right)+1\right) \frac{d}{6} \\
& \Rightarrow L=0.933 \cdot \frac{f_{c}}{\rho}\left(\frac{d}{L}\right) \\
& \text { This is Lair } \\
& f_{c}=20 \mathrm{~N} / \mathrm{mm}^{2} \\
& p=24 \mathrm{kN} / \mathrm{m}^{3} \\
& L_{d}=20 \\
& \Rightarrow L_{\text {crit }}=\frac{0.933 \cdot 20}{24.10^{-6} \cdot 20}=38.9 \mathrm{~m}
\end{aligned}
$$

Examine's comment:
Q2. Derivation of Critical Span. This was not a concept that had been covered in lectures, but the outline of the derivation was given and it was relatively straightforward for those candidates who understood the basic principles. The major error was to waste a huge amount of time writing down all the equations that governed the Magnel diagram, when all that was needed was a simple sketch and the recognition that it was the two tension limits that governed the limiting eccentricity. There were several completely correct solutions and several others that suffered from minor slips. As intended, it clearly separated those that understood the material from those who could merely put numbers into equations. Rather surprisingly, it was by far the more popular of the longer questions.
$3:$

Maximum bending moment due to uniformly distributed dead load

$$
\mathrm{M}_{1}=\frac{\text { u.d.L. } \operatorname{span}}{8}=\frac{50 \cdot 25^{2}}{8}=3906 \mathrm{kNm}
$$

Maximum bending moment due to moving load (load at midspan)

$$
M_{2}=\frac{\mathrm{p} .1 \cdot \mathrm{span}}{4}=\frac{500 \cdot 25}{4}=3125 \mathrm{kNm}
$$

(ail) Both the prestressing force P and its eccentricity e are constant, hence the section modulus has to be based on the overall moment range

$$
\mathrm{Z}=\frac{\mathrm{M}_{1}+\mathrm{M}_{2}}{\Delta \sigma}=\frac{3906+3125}{20 \cdot 10^{3}}=0.352 \mathrm{~m}^{3}
$$

(a.ii) The eccentricity is not constant, hence the section modulus is based on the maximum moment range at a section

$$
\mathrm{Z}=\frac{\mathrm{M}_{2}}{\Delta \sigma}=\frac{3125}{20 \cdot 10^{3}}=0.156 \mathrm{~m}^{3}
$$

(b) We choose b_{1} and b_{2} such that the top and bottom flanges have equal cross-sectional area A and, for simplicity, we neglect the web contribution to the second moment of area. The distance between the centroids of the top and bottom flanges is

$$
\frac{0.25}{2}+1.30+\frac{0.40}{2}=1.625 \mathrm{~m}
$$

We calculate the cross-sectional areas of the flanges from $A=\frac{Z}{1.625}=\frac{0.352}{1.625}=0.217 \mathrm{~m}^{2}$, hence:

$$
\begin{aligned}
& b_{1}=\frac{0.217}{0.25}=0.86 \mathrm{~m}, \text { say } 0.90 \mathrm{~m} \\
& b_{2}=\frac{0.217}{0.40}=0.54 \mathrm{~m}, \text { say } 0.55 \mathrm{~m}
\end{aligned}
$$

For these values of b_{1} and b_{2}, the section properties are

$$
A=0.705 \mathrm{~m}^{2}, \mathrm{Z}_{\mathrm{t}}=0.372 \mathrm{~m}^{3}, \mathrm{Z}_{\mathrm{b}}=0.319 \mathrm{~m}^{3}
$$

Simplifications have been made when calculating these properties, for example it has been assumed that the centroid is in the middle of the web.
(7)
(c) To determine mitable values of P and e we note that the stress inequalites can all be expriessed in terms of

$$
f_{t} \leqslant \sigma=\frac{P}{A}+\frac{P_{e}}{Z}-\frac{M}{Z} \leqslant f_{c}
$$

where Z is two elastii sectim madulus of tho fitre in questia.

These can be reasranged water to form

$$
e \lessgtr \frac{Z f}{P}-\frac{Z}{A}+\frac{M}{P}
$$

which are istrainght hins on a flot of e os $1 / P$ (a Magred diagran).

4 suth lines define a beasible colution

examiner's commerv:

Q3. Section design. Tested the most basic assumptions of prestressed design. Very few picked up the important distinction that with the eccentricity fixed the same section has to work both at midspan and at the supports. Several had not picked up on the section modulus as the moment range divided by stress range.

4
15001

Initial steal ctren

$$
\begin{aligned}
& =800 \mathrm{~N} / \mathrm{mm}^{2} \\
& \therefore \frac{800}{2200}=1-e^{-125 \varepsilon} \\
& \therefore \varepsilon_{p e}=0.0036
\end{aligned}
$$

(a) Noed iterative calculalion

Lst guess n.a defth $=350 \mathrm{~mm}$ ($1 / 2$ of efbective
(This value defor) not critieal - other quans, OK)

- Linuting curerete stanis

$$
=0.0035
$$

700

Stael shrain

$$
=0.033+0.0035=0.0071
$$

Staed stren $=2200\left(1-e^{-125.00071}\right)$

$$
\begin{array}{r}
=1294 \mathrm{~N} / \mathrm{mm}^{2} \\
\therefore T=1294 \times 1000=1294 \mathrm{kN} \\
C=350 \times 500,20=3500 \\
(C \text { too high }- \text { raim n.a }) .
\end{array}
$$

2nd quers $n-a$. defth $=175 \mathrm{~mm}$
Sted ftain $4 \times 0.0035+0.0036=0.0176$
Steel stres $=1956 \mathrm{~N} / \mathrm{m}^{2} \quad \therefore T=1956 \mathrm{KN}$

$$
C=175 \times 500.20=1750 \mathrm{kN}
$$

\qquad

Bred guess (from graph) or Coy reasmable guan

$$
\text { n.a. depth }=190 \mathrm{~mm}
$$

Stead strain $=0.013$
Steel striven $=1767 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
\therefore T & =1767 \mathrm{kN} \\
C & =1900 \mathrm{kN}
\end{aligned}
$$

Take araunad solution from graph $T=C=1850 \mathrm{kN}$ neutral ass depth $=185 \mathrm{~mm}$

$$
\begin{array}{ll}
\text { neutral axis depth } & =185 \mathrm{~mm} \\
\therefore \text { Lever arm }=700-\frac{185}{2}=607 \mathrm{~mm} \\
\therefore \text { Moment } & =1123 \mathrm{kNm}
\end{array}
$$

(b) if steed straimlimiled to 0.01

$$
\begin{aligned}
\therefore \text { Stael stan } & =1570 \mathrm{~N} / \mathrm{mm}^{2} \\
\therefore \text { Steel fare } & =1570 \mathrm{kN} \\
& =\text { Combersive face }
\end{aligned}
$$

\therefore defter of rectal axis $=157 \mathrm{~mm}$

$$
\therefore \text { Moment }=1570\left(700-\frac{157}{2}\right)=\frac{976 \mathrm{kN} \mathrm{~m}}{[25 \%]}
$$

Gamines's com mev:
Q4. Ultimate Moment Calculation. Intended to be a straightforward question that all but the weakest candidates could do. A surprising number of candidates did not allow for the correct lever arm when taking moments.
(12)

5 (a) (i) Inerasching the age of carencte rederes the amout of crects since ton Coungs' Modudus of conerete is hugter and lise forosilis of tore conarate is redued $[5 \%]$
(ii) Inereating the thuibrens of the curcete redues creup beeave tos water vabour has furtie to rugiats, thus alowing dorm the rate at whin it mors. However, it may mat segirifinalty offert tro eventual crecp sime bie wate vabous will be sapueged out in too and. [5\%]
(iii) Ireversing tho humdity of the surroundig air sill redrce lareap sim it will lowe Hto tondeney of wate it evaparate from tho enoreue [5%]
(iv) Inereaning the w/C ratio merciases bie pote of creep suin it will maviese tho amoul of woids and werrease the aunount of water btat is acoutble for movement.
(13)

Geoceral promutis
(1) Equblinim afthis before crap
(2) Equbbin afflis afte reap
(3) Change in strain in stal = change in strui in conent.

Equablim at stort
$\begin{array}{lll}\text { Area of lacenate } & A_{c} & \text { at } \mathrm{fen} / 4 \\ \text { Area of stacl } & A_{s} & \text { at } 0.7 \mathrm{fy}\end{array}$
Equabing give $\frac{A_{c} f(u)}{4}=0.7 \mathrm{fy}$. As

$$
\therefore \frac{A_{c}}{A_{s}}=2.8 \frac{\mathrm{f}_{y}}{\mathrm{fan}^{2}}
$$

Equellivim at end
Steel sties not huown - say λf_{y}

$$
\begin{aligned}
& \frac{A_{c} f_{m}}{6}=\lambda f_{y} \cdot A_{s} \quad[20 \%] \\
& \therefore \lambda=\frac{A_{c}}{A_{s}} \cdot \frac{f_{m}}{6 f_{y}}=\frac{2.8}{6}=0.4816
\end{aligned}
$$

(14)

$$
\text { Trilien strai is conenate }=\frac{f \mathrm{fu}}{\mathrm{fE}}
$$

Final strain in coneretes $=\frac{f_{\text {au }}}{6 E_{c}}(1+\phi)+0.0005$
where $\phi=$ crect focter (here $=3$)

$$
\begin{aligned}
& =\frac{4}{6} \frac{f_{m}}{E_{c}}+0.0005 \\
\text { Defferenes } & =\frac{f_{\text {un }}}{E_{c}}\left(\frac{8-3}{12}\right)+0.0005 \\
& =\frac{5}{12} \frac{f u n}{E_{c}}+0.0005
\end{aligned}
$$

Change in strain i steel.

$$
\text { Initial sfain }=\frac{0.7 f y}{E}
$$

Relanation causs stess te redue buy 2.5% crethouct change is stiom. Recous 0.6825 fy

Now strues $=0.4 \dot{6} 6 \mathrm{fy}$

$$
\begin{aligned}
\therefore \text { Stain change } & =\left(0.6825 \frac{-0.466)}{E_{5}} f_{y}\right. \\
& =\frac{0.216 f y}{E_{5}}
\end{aligned}
$$

Muat equal $\frac{5}{12} \frac{\mathrm{fm}}{E_{c}}+0.0005 \quad[10 \%]$
(15)

$$
\therefore f_{y}=\frac{E_{s}}{E_{c}} \cdot f a 1 \cdot 1929+0.00231 E_{s}
$$

$\mathrm{H} \quad E_{c}=9000 \sqrt[3]{\mathrm{fm}}(\mathrm{MPa})$

$$
\begin{aligned}
\therefore f_{y} & =\frac{E_{s}}{E_{c}} f_{\text {as }} \cdot 1.929+0.00231 E_{s} \\
& =42.9\left(\mathrm{fas}^{2 / 3}+462(\mathrm{MPa})^{[10 \%]}\right.
\end{aligned}
$$

Typhiad values (not ached for)

$$
\begin{aligned}
& \text { Typuiad wale } \\
& f_{a r}=20
\end{aligned}
$$

$$
\begin{aligned}
f_{a} & =20 & f_{y} & =778 \mathrm{MPa} \\
& =40 & & =964 \mathrm{MPa} \\
& =60 & & =1119 \mathrm{MPa}
\end{aligned}
$$

(c) Early attempts at IWesbernuig ned values much lowe then the os they all farces.

$$
[2006]
$$

Examiner's comunerv:
Q5. Creep. The least popular of the short questions. The chatty points were both done reasonably well, but there was lack of clarity in the approaches to the calculation. Many candidates wrote down some of the principles (equilibrium, equality of strain changes), but few carried it through to a logical conclusion.

