
Engineering Tripos Part lIB, lVlodule 4F1, 

CONTROL SYSTEl\1 DESIGN 


SAl\IPLE SOLUTIONS TO EXAM lVIAY 2012 


1. 	 Solution: 

(a) Bookwork on two-degree-of-freedom control systems. The resulting closed­
loop system from reference to output has to contain the same RHP zeros as 
the plant, and the relative degree of the closed loop must be at least as high 
as the plant. 
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(b) i. 

ii. Loop gain, 	L( s) s (s!Q) ~s' and the closed loop poles satisfy 
1 + L(8) = 0 giving the characteristic equation: 

B 
82(S + n) + -(8kp + k i ) 0 

m 
The roots will all be stable by the Routh-Hurwitz condition for a third 
order polynomial, requiring all the coefficients being positive (Le. n > 0, 
B > 0, kp > 0, k i > 0), and 

iii. 

~ = . 1 = S2(8 ~ n) = 8(s) 
Vre! 1 + K(8)Ga (S)Gp (S) 8 2 (8 + a) + m(skp + k i ) 


which clearly has a double zero at s O. 


iv. 

But 
00 	 00 00 

e(s) = 1 e(t)e- st dt =? &(0) = 1 e(t)eO dt = 1 e(t) dt = 0 

Also e(O) Vre!(O) - v(O) = 1, so that we must have v{t) > vre!(t) for 
a range of t to get J~oo (vre! (t) v( t) dt = O. i.e. v(t) must overshoot 

=1. 
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v. The step response of R(8) = (8+1)(8+2) is given by 

1 2 1 2 1 
Y(8) = R(8)- = ( )( ) ----+-­

8 88+18+2 8 8+1 8+2 

=> y(t) 1 2e-t + e-2t < 1 for all t > 0 since 2e-t > e-2t for all t > 0 

R(8) 

Note that the degree of the numerator is equal to the degree of the 
denominator so this is OK. 

vi. 
A A 	 A,Gp 	 ~8(8+a) 
v = Fhill = 2 B Fhill

1 + KGpGa 8 (8 + a) + ;;,(skp + ki ) 

Step change in the force due to gravity on the hill gives: Fhill(t) 
-mg sin(()) for t > O. The zero steady state gain will mean that the 
hill has no steady state effect on the velocity and v(t) ---+ Vo. The initial 
slope is given by the initial value theorem, 

V(O) lim 8(SV(8)) = lim 8 2 __-,-:-_ X -mgsin(()) = -gsin(()) 
S-(X) 8-00 

Solution: 

-_	 _s 2. C1 d 1 l' b 
s-l 

1 + kG(s) = 0 => s - 2 + k(s - 1) = 0 => s = 
k+2 

( ) a1.,oseG(s) 	 - oop po es gIven y 

+1 
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11. 	 As the gain is increased in magnitude (k < 0) the closed-loop pole 
appears to pass through +oc and re-appear at -00. This makes the 
closed loop very sensitive to infinitesimal delays. e.g. if k = -1.5 
when kG(O) -0.75 and kG(joo) = -1.5 then the Nyquist diagram 
will be a circle encircling the -1 point once in an anticlockwise direction 
implying stability since there is one RHP pole in G. However multiplying 
G by e-'T8 will give more encirclements of the -1 point due to the high 
frequency gain being > 1 in magnitude, and hence instability for any 
arbitrarily small time delay T > O. 

HI. 	 Advice A: do not use a constant gain controller. However even with a 
dynamic controller the stability margins will be very poor due to the 
RHP zero being at a lower frequency that the RHP pole. 

Advice B: Changing the unstable pole may not be possible since it may 
be an inherent feature of the system to be controlled, however taking 
a different measurement or additional measurements could change the 
position of the RHP zero. 

1 d .(b) 	G(s) -- an we reqUIre 
s 	 2 

A: 	 IT(jw)1 S; 2 for all w. 

B: 	 IT(jw)1 S; f. for all w ~ l. 

i. 	With controller, K(s), and loop gain, £(s) = K(s)G(s), then T(s) = 
L KG K{s) 

For 	internal stability we have 
1 + L 1 + KG s - 2 + K{s)" 
K(2) -I- 0 (i.e. K cannot have a zero cancelling the unstable pole in 
G). Hence 

i T(2) = K(2) = 11
I independent of the controller. 

i 0 + K(2) 

ii. 	 Let K{s) = n(s)/d(s) with the roots of n{s) in the LHP. Then T(s) 
n(s)/((s 2)d(s) + n(s)) will have no or zeros in and 
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C 

hence the Poisson integral can be used (as given in the data 
Hence if A and B are satisfied, 

1 JCXl 2o - log(l) = log(T(2)) - 4 2 log(T(jw)) dw
7r -CXl 	 + w

CXl 
=} 0 - 2 log IT(jwl dw1

o 4+ 

1 2 	 log IT(jwl dw + (CXl 2 log IT(jwl dw1o 4 + J1 4 + 
< 11 2 2 log(2) dw + (CXl 2 log(E) dw 

o 4 +w J1 4 + 
[tan-1 (1/2) 0]log(2) + [7r/2 - tan-1 (1/2)]log(c) 

=} log(c) > log(2) /[2tan-~(1/2) -1] -0.290 

=} 

Solution: 

(a) 	 i. The number of poles at s = 0 is 2 since the Bode magnitude plot has 
a slope of -40 dB/decade at low frequency with the phase ~ -180° as 
w~O. 

11. 	 The Bode gain/phase relationship for a stable minimum phase transfer 
function is given in the data sheet as, 

L.G(jwo) ~ 

when slope 
when slope 
when slope 

-20dB/decade 
-40dB/ decade 
-30dB/decade 

which have been sketched on the Bode diagram. 
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Bode Diagram of G(s) 
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iii. 	The all-pass term looks like e- jwT , with phase -wT, and at w = 20 
rad/s we have wT;:::: (425 - 105) * iT/180 :::;. T ~ 0.28s. 

iv. 	 It is difficult to obtain a crossover frequency for the closed loop system 
when the plant has a phase less than -180°. Hence a crossover frequency 
greater than 3 rad/s would be difficult. 

v. 	 The Nyquist diagram will be as below. Note that the large dashed part 
of a circle corresponds to the Nyquist D contour when it circles to the 
right of the two poles at s = O. In this region we have s = RejiJ where 
() varies from -iT/2 to +iT/2 and R is small, and G(s) ~ A/s2 with 
A > 0, so that G ;:::: (A/R2 )e-2jO 

, so that the contour is as shown (rather 
than going the other way around). There are hence zero encirclements 
of the -1 point and no poles in the RHP and hence we have closed-loop 
stability if k > 0 and k is small. To determine the 

-540~--~~~~~--~~~~~w---~~~~~L---~~~~~ 
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value of k we can examine the enlarged ~yquist plot below and deduce 
that closed-loop stability if: Ik > 0 and k < 1/0.062 = 161 

[aside: note if we had chosen to avoid the poles at s = 0 by going 
into the LHP then the Nyquist contour would have gone the other way 
around giving two counter-clockwise encirclements of the -1 point, and 
this will equal the number of RHP open-loop poles and hence again 
imply stability for the same range of k as before. 1 

Nyquist Diagram 
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The area near the origin has been magnified in the following plot: 

NyquiSt Diagram 
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(b) 1. \Ve are given the specification: 

A: 	IL(jw)1 ~ 10 for w :s: 0.1 rad S-I; 

B: 	IL(jw)1 :s: 0.01 for w ~ 10 rad S-I; 

C: 	Phase margin of at least 45°. 

Conditions A and B are just satisfied by unity gain constant controller 
K = 1. A phase advance compensator has IK(O)I < IK(joo)1 and 
IK(O.lj)/ < IK(lOj)1 so either A or B must be violated with a phase 
advance compensator. 

The phase of a phase lag compensator is negative for all frequency, but 
the phase of the open loop plant is always less than -135° for all frequency 
and hence condition C cannot be satisfied with a phase lag compensator 
(since it would require the phase to be greater than -135° and the unity 
gain crossover frequency. 

11. 	 A unity gain compensator almost satisfies C with a phase margin of 
~ 40°. Taking the hint we will first design a phase lead compensator to 
increase the phase margin (but violate either A or B). Consider, 

Ka(s) = s/0.5 + 1 
s+l 

which will have little effect on the low frequency response but will in­
crease the high frequency gain by a factor of 2 and add phase advance 
at w = WI Vo.5 = 0.707 rad/s of 2 tan-l (1/V0.5) - 90° = 19.5°. 

The high frequency gain is now too high and can be reduced by a phase 
lag compensator. Consider, 

O.ls + 1 

s/3 + 1 

which will also have little effect on the low frequency gain but will reduce 

the gain at w = 10 rad/s to IKI (lOj)1 = 11O~t3~11 = 0.4064. 

Conditions A and B are therefore met. Confirming condition C is not 
as easy since the crossover frequency will have to be determined. The 
accurate Bode diagrams for this arrangement are given below and it can 
be seen that the condition is met with the crossover frequency around 
0.5 rad/s. (The calculations in this solution have all been done accurately 
but clearly the graphical sketches asked for in the question will be much 
"broader brush" for which full credit was awarded.] 
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Bode Diagram of System + Controller 
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