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1. 	 (a) The describing function is defined as N(E) = CUI + jVd/E, where U1 and VI are the in-phase and 
quadrature first Fourier coefficients of fee), when e(B) = Esin(O). Since fee) is an odd function in 
this case, VI = O. Assuming that E> a, UI is given by (the standard formula); 

1 12"11"U1 = 	 - f(EsinO)sinOdO (1) 
11" 0 

2 r f(EsinB)sinOdB (since fee) is odd) 	 (2) 
11" Jo 
417r/2
-	 f(EsinB)sinBdB (3) 
11" 0 

417r/2 
f(Esin 0) sin BdB 	 (4) 

11" sin-I(a/E) 

since f (e) 0 for 0 ::; e ::; a. Therefore 

417r/2
U1 = 	 - (2EsinB-a)sinOdO (5) 

11" sin-I(a/E) 

1
1f/28E 1"11"/2 4 

- sin2 0 a sinBdB 	 (6) 
7r sin-l(aIE) 11" sin- 1 (al E) 

4E 1,,/2 	 4a ,,/2 
- (1 cos 2B)dO + -;;;: [cos O].in-I(alE) 	 (7) 

11" sin-lea/E) 	 " 

4E ,,/2 2E [ . ]1r/2 4a [ ]11"/2-[B].1T' 	 -l( /E)--7r sm2B •. -I(a/E)+-7r cosB. -I( IE) (8)
stn a In 	 SIn a 

[2E 4: sin- 1 (~)] 2: [O-sin(2sin- I (i))] + ~ [o-cOS(Sin- 1 (i))] (9) 

Now from basic trigonometry we have that cos(sin- 1 x) .II - x 2 and sin(2sin- I x) = 

so we have: 

(10)2E - 4: sin-1 (i) + 2: (~) J1 - (;f 
2E- 4E (11)(i)11" 
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Figure 1: Describing function N(E) 

Hence 

N(E) i 2 - ! sin- l (~) (12) 

If E :s; a, then clearly N(E) = 0, since feE sin B) o. 
(b) 	When E > a but approaches a, we can see that N(E) approaches 0, since sin-lea/E) approaches 

IT/2. Thus N(E) is continuous at E = a, and there is no jump in the graph. When E -> 00 we have 
sin-lea/E) -> 0, so N(E) -> 2. (This can also be seen by noticing that for very large input signals, 
the nonlinearity looks approximately like a straight line of slope 2.) 
Does the graph have any turning points? Consider its slope. Since 

d . -1 1 
(13)dx sm x = ';1 _ x 2 

we have (for E > a) 
dN(E) 4 	 (-a/ E2) > 0 for all finite E.(fE= 	 (14) 

IT Jl - (-E)2 

Thus we have dN{E)/dE 00 at E a, and the slope reduces as E increases, but never becomes 
o. The graph is therefore as shown in Fig.I. 

(c) 	 The describing function method predicts that a limit cycle will exist if the graph of -l/N(E) in
tersects the Nyquist locus of G(jw) on the Argand diagram. Since N(E) is real, and increases 
monotonically from 0 to 2, the graph of -l/N(E) lies on the real axis to the left of -1/2. So the 
question is where does the Nyquist locus of G(jw) intersect the negative real axis? 

arg G Uw)=arg (jW!I)3) 	 1 (15)-3arg(jw+l) -3tan- (w) 

So the intersection with the negative real axis occurs at frequency wo, where 

-3 tan-l(wo) = -IT, hence Wo tan ~ = v'3 	 (16)
3 

This gives 

2 2 1 


IG(jwo)I 	 (17)
Ijv'3 + 11 3 = 23 = 4: 

2 



Since 1/4 < 1/2, no intersection takes place between -1/N{E) and G(jw). Thus the describing 
function method predicts that no limit cycle will exist. 

(d) 	The describing function method assumes that the linear system in the feedback loop has 'low-pass' 
characterisitcs, namely that if a limit cycle exists, then the second and higher harmonics propagating 
around the loop are negligible. The linear system in this example satisfies this assumption, since 
IG(jw)1 is monotonically decreasing. In particular, the gain falls approximately proportionally to 
w3 once the frequency is above the 'corner' (-3dB) frequency, which in this case is 1 rad/sec. The 
frequency on which the prediction is based is Wo = v'3 = 1.732, which is a little above the corner 
frequency. So the neglected 2nd harmonic of this frequency would be attenuated approximately 8 
times as much as the fundamental, the 3rd harmonic 27 times as much, etc. It therefore seems likely 
that the describing function prediction is reliable in this case. 

2. 	 (a) Without loss of generality, assume that the equilibrium is at x O. Let x(t;xo) denote the solution 
of x = f(x) at time t > 0, if x(O) Xo. The equilibrium is stable if, for any to > 0, it is possible to 
find a 6> 0, such that Ilx(t;xo)11 < to for any Xo such that Ilxoll < 6. 

(b) 	The Iinearisation of x f(x) about the equilibrium Xe is given by x = Ax, where 

(18) 

The stability of the equilibrium Xe can be investigated by checking the stability of the linearised 
system, namely by checking the eigenvalues of A. If the linearised system is asymptotically stable 
then the eqUilibrium Xe is stable. If the linearised system is unstable then the eqUilibrium x. is 
unstable. If the linearised system is marginally stable, then the stability of Xe ·is not determined by 
this method. In terms of eigenvalues this means that 

i. If all have negative real parts then the equilibrium Xe is stable. 
ii. If any has a positive real part, or if there are any repeated eigenvalues on the imaginary axis, 

then the equilibrium Xe is unstable. 
iii. Otherwise the stability of the equilibrium is not determined. 

(c) i. At an equilibrium (Xle,X2e) we have Xl = 0 and X2 O. Therefore we have 

o U(TI Xl.) kxie (19) 

o U(T2 - X2e) + kXIe (20) 

From (19) we have 

Xl e = 2 
1 
k ( -U ± Ju2 + 4kuTI) (21) 

Since Xle > 0, the positive square root must be taken, so we have 

Xl e 2
1
k ( -u + Ju2 + 4kuTI) 	 (22) 

Noting from (19) that kXIe = U(TI - Xl.) and substituting this into (20) gives 

U(TI - Xle ) = U(X2e - T2) 	 (23) 

hence 
(24) 

(which can also be obtained by adding (19) and (20) together). It is possible that this value of 
X2e turns out to be negative, in which case no equilibrium exists for Xl > 0 and X2 > O. But if 
it is positive, then the equilibrium is unique, with the given values of Xl e and X2e' 
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ii. 	 The verification can be done either by substituting the given values of u, rl, r2, k into (22) and 
(24) or by checking that (Xle , X2e) = (1,2) satisfies (19) and (20). 

iii. 	To check the stability of the equilibrium (Xle , X2e) = (1,2) we will linearise the nonlinear equa
tions at this point. We have 

8X1 8X2A 	 [~ ~] (25)E.ii E.ii 
8X1 8X2 (1,2) 

-u - 2kXl 0 
(26)2kxl -u ] (1,2) 

[ -;3 ~1 ] (27) 

Since this is a triangular matrix the eigenvalues are just the diagonal elements, namely -3 and -l. 
So the linearised system is asymptotically stable, and hence the equilibrium (Xl e , X2e) = (1,2) is 
stable. 

01 	 Overall a straightfo~ard q~estion, well answered by most candidates. In part (b) most 
students failed to see the infinite slope at E=a. Part (d) was not well answered as the students 
could not explain rigorously the reason why the prediction is likely to be accurate. 

A straightforward question, well answered by most candidates, which resulted in the highest 
Q2 mean of all three questions. Although very standard, the definition of stability was somewhat 

confusing to many students in part (a). 
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J.M. Gon~alves 

3. (a) Since the magnitude of the zero is smaller than the magnitude of the pole, the H,XI norm is achieved 
as w -t 00. Hence, 

(b) Firstly note that 
1 1 

-c-----;;3 = 
1 + 8+4 

s+4 

S + 
is in Hoo and 

G 3 

which is also in Hoo. Hence, 

[i] 1~ G [1 GJ 

is in Hoo. Then 

1 
[1 GJ} Amax {[~*] 1+1G* [1 1] [n 1 ~ G [11+ 

2AmaxC1:GI2[~.][1 GJ} 

2Amax{II+1GI2 [1 G] [~.]} 
21 + IGI2 

11 +G12 

where we used the fact that AiCAB) = Ai(BA) for Ai # O. Hence, 

1+~
2 sup 2 

w 11 + I 
w2 +25 

2sup 2 49 
w w + 

2 

from part (a). 

(c) G = N/M, Normalisation requires that INI2 + IMI2 = lor 

1 
1 + IGI2' 

Thus, 
21 1 + w + 16 "* N 2 - 9 

INI2 - w2 +25' 

Take 
N(8) 3 M(s) = 8+4 

8+5; 8+5 
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(d) Gt:. (N +I1N )/(M +I1M ),II[I1N 11M] II"" < t. This set is stabilised by the controller k = -1 if 

i.e. f ~ 1/-/2. 

4. (a) Using the hint, y = d + PIU and also U = v + K(r + y P2u). Replacing y from the first equation in 
the second equation gives u v + K(r + d + PIU - P2U), Solving for U yields 

Replacing u in y gives 

y = PI [I - K(PI P2)]-1 (Kr +v +Kd) + d 


This shows the first two transfer functions. The transfer function from d to y so far is 

PI [I - K(PI P2)]-1 K + I 

Multiplying on the right by (I (PI - P2)K) 

PI [I - K(PI P2)]-I K(I - (Pl P2 )K) + I - (PI P2)K 

PI [I K(Pl P2)]-1 (K K(PI P2)K) + I - (PI - P2)K 

PI [I - K(PI - P2)]-1 (I K(PI - P2»K + I (PI - P2)K 

= PIK + I PI K - P2K 

I-P2 K 

(b) 	The transfer function from r to y is PIK. Hence, since K is unstable, the closed-loop system is 
unstable. 

(c) 	The transfer function from v to y is which is clearly unstable. Hence, there is no K that stabilises 
the system. 

(d) 	We have that 

O"Tnax [(PI (jw) P2(jw»K(jw)] ~ O"max[H(jw) - P2(jw)] O"max[K(jw)] ~ C < I, Vw 

Hence 

sUPO"Tnax[(PI(jw) P2(jw»K(jw)] < 1 


w 

Since PI, P2 , K are all stable, this is sufficient to ensure stability of the closed loop system. 

(e) 	Take Pl(S) P2(S) .•!1 and K(s) -10. Then the closed-loop system is stable (closed-loop 
pole at s = However, condition (1) is not satisfied. 

Q3. . _ 
Overall a straightforward question, well answered by most candidates. In part (b) many 
students forgot about the transpose conjugate in calculating the maximum singular value. 
Others, calculated the eigenvalues of matrix transfer function directly. In part (d) some 
students did not notice that the required stability condition was already given in part (b). 

Q4 ."' "'-0 •... ____ . _, ___....... _ .... ~, .......... _.... _. 


This was the question that was the least attempted. It clearly suffered from lack of time as 
most students did not even tried parts (c), (d) and (e). Hence, the low average. 


