
Engineering Tripos Part lIB, tv10dule 4F3, 

OPTIMAL AND PREDICTIVE CONTROL 


SAMPLE SOLUTIONS TO EXAM tv1AY 2012 


1. Solution: 

(a) i. Bookwork to derive: 

Vex, k) = min {V(J(x, k), k + 1) + c(x, un; vex, h) = Jh(x).
uEU 

ii. 	 The advantage of this approach is that the minimisation over allu's 
is replaced by a minimisation over one u at a time, but over all x. 
Sometimes the solution of each minimisation can be analytically found 
(e.g. in a quadratic case) and then a backward recursion is possible 
to find Vex, k). In more complex cases when it might be tempting to 
quantise the state space the 'curse of dimensionality' comes into play 
and this approach is only feasible for a small state dimension. 

(b) i. The H-J-B equation is: 

8V 	 V 
max {vIuW + 88 (ax(t) - u(t))}

8t u(t) 	 x 

[note the max in this equation because we are maXlmzszng the utility 
rather than minimising the C08t - this can be verified by minimising - V 
and following through the 8ign changes} 
Differentiating with respect to the scalar, u(t), to find the max gives, 

1 	 8V 
8x =0 

and hence the optimal u is 

u*(t) = ~ (8V) -2 
4 8x 

and 

av 
8t ~ ( ~~) I + ~~ (ax( t ) 

1 (8V)-1 8V - '4 8x + ax(t) 8x 

The boundary condition will be Vex, T) 0 since there is no utility 
in any residual funds. [very few candidate8 actually 80lved for u at this 
point} 

Poge. \ 




ii. If we assume, V(x, t) = Jw(t)vfx then 

av 1 1/2 J::. 
= "2 (w(t»- yxw(t) 

and 

av 1 ( ) -1/2 ~()
- = - x VW\t)ax 2 

and substituting into the H-J-B equation gives 

- ~ (W(t»-1/2 vfxw(t) ~2vfx (W(t»-1/2 + ax~ (X)-1/2 Jw(t) 

The common factor vfx can be cancelled and we are left with, 

w{t) = -aw(t) - 1, w(T) = o. 

iii. 	 The solution for w(t) is in the form A + Be-at with A + Be-aT = 0 so 
aT + e- aT + e-at )w(t) = B(_e- at ) and w = -Bae-at -aB(_e- 1. 

Hence B = eaTla. 
w(t) = (ea(T-t) - 1)la 

and 

u*{t}~{~~ )-2 

x(t)lw(t) 

a 
- (ea(T-t) 1)x(t) 

~. ~:;"tiOn: f'le,y few attempts at thi, que.,tionj

l x(t) Ax(t) + Bl w(t) + B2U(t) 

z(t) C1x(t) + D 12U(t) 

u = flu + Lx, Z = AIz 

Substituting foru and z gives 

x(t) Ax(t) + BIW(t) + B2 (R- 1u(t) - R~lLx(t») 

- (A B2R~lL)x + B1w + B2R- 1u 

i(t) - Af [C1x(t) + D12 (R-1u(t) R-1Lx(t»)] 

AI [(C1 D 12R- 1L)x + D 12R- 1u(t)] 
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(b) 	If MT M = I then 112112 = IIzll2 and hence the two norms will be the same. 

(c) We require 

D12 	 M D12R-1 = MU1EVT R-1 

T
[ 	~] if R = EV , M= [ ~f ] 

Also 

giving L 

(d) 	The solution to the revised problem can now be taken from the ARE in the 
data sheet: 

~T - ~ T ~ A AT 2 A AT
A X+XA+Cl1CU-XB2B2X+J- XB1B 1 X=O 

where the solution X is such that (..4. ihi{fX +J-2iJdJfX) is stable and 
a satisfactory state feedback is given by £t(t) -iJ'fXx(t). The controller 
for the original problem is now 

u(t) = 	 R-1 (£t(t) - Lx(t)) 

R- 1 (-iJ'fXx(t) Lx(t)) = R-1 (-iJ'fX - L) x(t) 

_R- 1 (RT
-

1Bix + L) x(t) 

Solution: 

(a) 1. The receding horizon operates as follows: 

• 	 Generate an optimal and feasible open-loop sequence of inputs over 
a finite prediction horizon based on current state measurements or 
estimates; 

• 	 Apply only the first element of the sequence to the plant. Discard 
the rest of the sequence; 

• Take a 	new measurement at the next sampling instant. Repeat. 

11. Predictive control might be advantageous when: 

Page 3 



• 	 hard (possibly non-convex) operational or physical constraints must 
be enforced; or 

• 	 the plant is MI:lvIO with a high degree of cross-coupling or actuator 
redundancy; or 

• 	 the plant is nonlinear, and optimising over an infinite-horizon is not 
computationally feasible; or 

• 	 the control objective is clear, but it is important to adapt to chang­
ing plant model. 

Examples might include: 

• 	 Minimising variance in paper thickness whilst enforcing constraints 
on tank levels. 

• 	 Manoeuvring a spacecraft with finite thrust capability along fuel­
optimal trajectory, whilst avoiding collisions with obstacles. 

(b) 

Xo 	= Xo 

Xl Axo + Buo 

X2 	= A2xo + ABuo + Bu! 

X3 	= A3XO + A2BuO + ABul + BU2 

Therefore: 

x 	= [~] Xo + [A i B~] U . 

. 43 A2B AB 
~ ,------vv----~~ 

<P 	 r 

(c) 1. Sufficient conditions to ensure convexity are: 

[$ ~] ~ 0, P ~ 0.R 	> 0, 

(very few produced a correct condition on S J 
11. 

2 

V(x, u) xIPX3 + L (xIQ:r:k + uIRUk + XISUk + u,[STXk) 
k=O 

= x T n X + uTR u + x TS U + uTSTX~e e e e 

V(Xo, u) = (1)xo + fU)T Qe (1)xo + ru) + uTReu 

+ (1)xo + ru)T SeU + u T S; (1)xo + ru) 
T T T(T T = Xo 1> Qe1>xo + 2u f Qe + Se ) 1> xo 

+ uT (fTQef + rTse + s;r + Re) U 
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Terms of V(xo, u) which do not include the decision variable u can be 
neglected as they do not affect the minimiser u*, so the QP in standard 
form is: 

Subject 	to: 

Ju ~ c+ WXo 

A3XO + [A2B AB B] u O. 

i.e. 

[0 0 0 I] [<pxo + ru] 0 


(d) 	 • Solving a QP is more computationally demanding than evaluating a 
matrix-vector multiplication, but convex QPs can be solved "efficiently". 

• 	 Computation time might introduce a delay in the loop, to which the 
controller must be robust 

• 	 The numerical precision required to solve the QP might be higher than 
that required for evaluation of a matrix-vector multiplication 

• 	 MPC historically applied to slow processes where computation time was 
not an issue 

• 	 For faster processes, a sufficiently fast computer is needed (alternatively 
implementation on FPGAs or other dedicated hardware is a current 
research topic) 

• 	 Shorter prediction horizons can reduce computational demands 

• 	 Use move-blocking to reduce the number of decision variables 

• 	 Can explicitly include delays in the prediction model to allow longer for 
computation 

• 	 (Explicit MPC uses multi-parametric programming to precompute the 
solution as a piecewise-affine function of the state) 

4. 	 Solution: 

(a) 	 1. The constraint admissible set, S ~ ~nx is the set of states for which 
the state and input under the specified control law satisfy the specified 
constraints. For constraints Z c ~n;t X ~n", S is constraint admissible 
if: 

(x, Kx) 	E ZVx E S. 
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For the above system, there are only input constraints, but these are a 
function of the state. Therefore, the constraint admissible set 

ii. The stabilising K that meets the specification is K = ~. [many solu­
tions forgot about the stability requirement] 


(A + BK) = (1.2 5/3) R:: -0.47. Therefore for a given initial condition 

Xo: 

Xn (A + BK)nxo 

= (-O.47)nxo 

IXnl = O.4T'l xol· 

Therefore the magnitude of Xn is strictly decreasing, so if Ixol ::; 3 then 
IXnl 3, and Iunl ::; 3 x ~ = 5, '<-In E {O, ... ,CX)} . 

(b) Th " ["" ," ] T d" [ " " ] T1. e sequences u U o u l ... UN-I an x = Xo Xl ... X N 

are optimal and feasible at k = O. 


After the first control action has been applied, a candidate solution for 

the subsequent optimisation problem is: 11+ = [ui 11'2 .•• 7l'N -1 K:l:'N] 

andx+=[XI x2 ... x N (1.2+K)xN]T. 


The beginning of both sequences is feasible by construction due to the 

feasiblity of the previous optimisation. The value appended to the input 

sequence, K xNis feasible because the terminal constraint guarantees the 

controller U K X is constraint admissible when k N. The terminal 
set is also invariant, so (1.2 + K)XN is also constraint admissible. 

The cost associated with these candidate sequences is: 

V(x+, u+) = V*(xo) -qx6 - ru~ px~ 
\", 'V'----' 

Terms removed 

+qX:;' + K2rx~ + (1.2 + K)2pX~. 
, J 

V 

Terms added 

Hence the optimal cost for the new problem must be less than or equal 
to the cost of the candidate feasible solution: 

ii. 

The receding horizon control law stabilises the plant to the origin asymp-
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(c) A stabilising controller does not exist if IXkl :::: 25 since in this case IXk+11 = 

11.2xk + ukl :::: 1.2 x 25 5 = 25, so that IXnl will always be :::: 25 for all 
future n. 

If this is a reasonable state to expect, then the plant must be modified (e.g. 
adding redundant actuators, or replacing the actuators with some with a 
larger range), or the open-loop dynamics must be modified. 

KG 2012 
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Answered by most candidates. Part (a) was straightforward and answered well but part (b) 
where they were required to set up and solve the Hamilton-Jacobi-Belman pde for an example 
they had not seen before, gave significant difficulty for most candidates, . 

A most unpopular question with relatively simple matrix manipUlations but they required a 
deeper understanding of the material. 

A popular and straightforward question on MPC with most attempts pretty complete and 
understanding the main points. The discussion parts were more varied in the length and 
depth of the answers. Fortunately minor manipulation slips had minimal consequences. One 
point that was almost completely missed was conditions on the cross term, 5, to make the 
problem convex, with most candidates requiring 5>0 in spite of it not even being square! 

~. 

Attempted by all candidates. The manipulations were done pretty well but the precision of 
various of various statements and definitions were variable. 



2012 paper 4F3 Optimal and Predictive Control - Answers 

l{b)(i) ~~ = i (~~)-l +ax(t)~~ 
(b)(ii) wet) -aw(t) - 1, weT) = o. 

(b)(iii) u*(t) (ea(TQt)_l)x(t) 

A 	 A A 1
2. 	 (a) A = (A B2R- 1L),B1 = B1,B2 = B2R- , 

01 M(CI D12R- l L), D12 MD12R- l . 

(b) 	MT!v! = I. 

(c) 	 R = EV, L = UtC l , AI = [ ~f ]. 
• AT T A AT -2 ATA A 	 A A

(d) 	The ARE IS: A X + XA + CllCll - XB2B 2 X + r XB1B l X = 0, where 

011 = Ui'Cl . U(t) -R-l (RT- lBiX + L) X(t). 

3.(c)(i) 	 [$- ~] 2:: 0, R> 0, P 2:: O. 

(C) (ii) 

Subject 	to: 

Ju::; c + l'Vxo 

[0 0 0 I ] [<i>xo + ruj = 0 

4{a)(ii) K = -~. 
(b)(ii) (1.2 + Kfp p < (q + K2r) 

(c) 	 Cannot be stabilised if IXkl 2:: 25. 
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