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Question 1 

(a) We first compute the square of the norms 

2 

3' 

and take the square root to obtain the norms 

v'IO 
-5-' Ilx3(.) II 

or 

Ilxl(')1I = 0.816, Ilx2(')11 = 0.632, Ilx3(.) II = 0.535. 


(b) 

1 = 0 
1-1 

Jl t2 . t3dt( () ()) 
-1 

X2 • , X3 . 

(c) We apply the formula 

i-I 
hOh(.) = Xi I)Xi(.), fk(·))fk(.) and f()

i . = IlhOIi'k=1 
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The nr!>t basil; vector can be constructed by normalisation JI (.) = Xl (.) I iixi (.) ii. 
Since (XI(.),X2(.)) = 0, the second basis vector can also be constructed hy normali­
sation 12(.) = x2(.)/llx2(.)II· For the third basis vector, 

13(') = X3(.) - (X3(.),JI(.)}JI(.) (x3,h(·)h(·) 

_ () (X3(.),XI(.)} () (X3(.),X2(.)} () 
- X3 . - IlxI(')1I2 Xl· - Il x2(.)11 2 X2· 

2/5
=X3(') - 2/3X1(.) 


- 3 3
h(t) = t - st for t E [-1,1]' 0 otherwise, 

then compute the squared norm 

1113(.)11 2 = 1~ (t3 - ~t) 2 dt = 111 (t6 ~t4 + ~t2) dt 
5 25 

6 81 7 6 3 31 
1 

2 
= 7t - 25 + 25 t -1 7 25 175 

and 13(·) 13(·)/1113(·)11· 

In summary, we have, for h(t)=h(t) h(t) =0 for t 1:. (-1,1], and for t E [-1,1]' 


J6
h(t) --;;--t, !2(t) , 

L. 

I .. 

h(t) = 1.225t, h(t) = 1.58lt2 

(d) From the previous part, we know that 

5V14 ( t 3and h(t) = -. ­
. 4 \ 

, and h(t) = 4.677(t3 
- 0.6t). 

J63 h()' 

and 

and 
- 3 - 3 

X3(') = 13(,) + S-Xl(.) = 1113(,)1113(.) + Sllxl(')llh(.) 

f8 3J6Villh (.)+ 53h ('). 

Thus, the vector representations of Xl (.), X2 (.) and X3 (.) are 

J6 v'15 (J6 0 2V14):VI = (3,0,0), :V2 = (0, -5-,0), :V3 5 ' , 35 ' 

respectively, or 

:VI = (0.816,0,0),:V2 (0,0.632,0),:V3 (0.145,0,0.214). 
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(e) 

These are equal to the squared norms computed in part (a) as expected. 

The distance betweeen Xl and X2 is 

or 

the distance between X2 and X3 is 

2V2W_ v'6 v'IO _2v't4) _
(	 5' 5' 35 35 ' 

or 
IIX2 - x311 0.828, 

and the distance between X3 and Xl is 

4v'I05v'6 	0 2v't4) 
3 ' , 35 105 

or 

II X 3 - xIII = 0.390. 


(f) 	If M is the transmitted message, taking on values in the set {I, 2, 3}, and if is 
the reconstructed message at the receiver, the error probability for equiprobable 
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messages is 

3 1 
Pe = 	 z::: 3 Pr(lW t }'vllM = m) 

m=l 

}t Pr ( U {M = m'} M = m)
m=l m'ofm 

1 3 

S; "3 z::: z::: Pr(M m'lM = m) 
m=lm'ofm 

= ~ t z::: Q ("Xm' - xmll) 
J 2N3 m=l m'ofm o 

~ ~ 	[Q (4:) +Q e~) +Q (4~)1 
or 


Pe S; ~ [Q(1.033) + Q(0.828) + Q(0.390)] 


A popular straightforward question requiring tedious integrations. A surprising 
number of students were unable to solve definite integrals (the integral of x2 

from -1 to 1!) 
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Question 2 

(a) 	We have 

H(XZIY) = H(XIY) + H(ZIXY) = H(ZIY) + H(XIYZ), 

where H(ZIXY) = 0 because Y determines Z (since f(.) is a deterministic function), 
and H(ZIY) = 0 for the same reason. Therefore, 

H(XIY) H(XIYZ). 

The data processing theorem states that, since the random variables X, Y and Z 
form a Markov chain, i.e., H(XIY) H(XIYZ), the mutual information leX; Z) 
can not exceed the mutual information leX; Y) or ICY; Z). 

(b) 	 We can compute 

Pz(l) = L L PXyz(x, y, 1) (1 - p)a + pa a 
x y 

and thus Pz(O) = 1 - adoesn't depend on p. It is easy to see that 

H(XIY, Z = 0) = 0 

because, given that Y is not an erasure (Z = 0), the output of the channel determines 
the input with no uncertainty. Similarly, we conclude that 

H(XIY,Z = 1) = H(X) = H2(p), 

because an erasure gives no information about the channel input. Thus the entropy 
of the channel input given an erasure is equal to its entropy with no observation. 

(c) 	The mutual information is 

leX; Y) = H(X) - H(XIY) = H(X) - H(XIY, Z) 

= H2(p) - H(XIY, Z = O)Pz(O) - H(XIY, Z l)Pz(l) 

= H2(p) - H2(p)a = H2(p)(1 - a). 

H2(P) and hence mutual information is maximised for p 1/2, for which leX; Y) = 
1 - O. This is also the capacity of the Binary Erasure Channel (BEG) since, by 
Shannon's coding theorem, this is equal to the maximum of the mutual information 
over all input distributions. 

(d) 	The capacity of this channel is C = 1 - 0 = 0.4 bits per use. We are asked to 
communicate at a rate R = 0.5 > C above capacity. Hence, it is not possible to 
achieve arbitrary reliability. The error probability can be lower bounded using the 
converse to Shannon's theorem 

ell 2
>1----=--­
- R nR 5 n 


where n is the codeword length. 
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I _ \ 	 ""'f". 1 .. _ r , • l" ( \ ... r A \ ...... I' ,.1~ 	 1,.. I
I.e) vve uellile l:t new LUlll:1.1UIl J\'YI,Y2) = 1 rur Yl = Y2 = L.l. ana J~Yl,Y2) = v ror all 

other values of Yl and Y2. Observe that 

where H(ZIYI, Y2) = H(ZjX, Yb 1'2) = 0, leading us to conclude that 

Thus, the mutual information of interest can be stated as 

leX; YI , Y2) = H(X) - H(XIYI , Y2) = H(X) - H(XIY1, 1'2, Z) 

= H(X) - H(X!Yb Y2, Z = O)Pz(O) H(XIYI , Y2, Z = l)Pz(l) 

= H2(p) - H2(p)Pz(1), 

following from the fact that, if any or both of the channel outputs are non-erased 
(Z = 0), our uncertainty about the channel input is zero. 

Since the two BECs are independent, the probability of them both being erased is 
(h62, leading to the expression 

which iR maximiRp.rl for p = 1/2, for which we eet the capacity of the channel with 
input X and output (YI , Y2), 

(f) 	 We start by analysing channel 2. Ifeither YI or Y2 or both are erased, our uncertainty 
about X2 is not reduced by observation of the channel outputs. Only when both 
are non-erased can we deduce X2 with certainty. Let Z = f(Yb Y2) be an indicator 
function that takes the value 0 if both channel outputs arc non-erased and 1 in any 
other case. We have Pz(O) = (1 - 6)2 and Pz(l) = 1 (1- 6)2. As before, it is easy 
to show that H(X2IYl , Y2) = H(X21Y1' Y2, Z). Thus, 

l(X2; YI, Y2) = H(X2) - H(X2!Yl , 1'2, Z = O)Pz(O) - H(X2!YI, Y2, Z l)Pz (l) 

= 1 - (1 - (1 - 6)2) 

(1 - 6)2. 

As for channell, given X2, the channel between Xl and (Yl , Y2) is equivalent to 
the parallel BEC channel setup of the previous part with 61 = 62 6 and uniform 
input, and thus 

An apparently simple but in fact difficult question that tested the fundamental 
understanding of concepts such as entropy, equivocation and mutual 
information.. 
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Question 3 

(a) 	The convolutional encoder outputs two binary code digits for every source binary 
digit. Thus its rate is R = 1/2. 

The binary connection polynomials for this encoder are (1,1,0) and (1,1,1). The 
generators in octal form for this encoder are thus (6,7)8_ 

Since there is no universally accepted convention on whether to express connection 
polynomials from right to left or from left to right, an answer of (3,7)8 will also be 
accepted if properly motivated. 

(b) 	The encoder has two binary memory elements and therefore has 22 = 4 states. The 
state diagram is drawn below. 

1/01 

0/10 

1/11 

0/00 

(c) 	The trellis is drawn in the picture below. Two zero digits are required to return it 
to its initial state. 

State Input 
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(d) 	11 A Xl, ... , Xn is the codeword and Y = Yi, ... , Y~ is the sequence of channei 
outputs, then the maximum likelihood rule for picking the estimate x of X for the 
observation Y = y (YI, . .. , Yn) is 

x = argmaxPYlx(ylx). 
:v 

For a memoryless channel, this can be rewritten as follows 

n 

X = argmax IT PYtlx;(Yilxd 
(XI, ... ,Xn) i=l 

argmaxlog (IT PYiIXi(YiIXd) 
(XI, ... ,Xn) i=l 

n 

= argmax Llog (PYiIX;(Yilxi)) 
(XI, ... ,Xn) i=l 

arg max L
n 

log (I'\, + PYiI X ; (Yi IXi)) , 
(XI"",Xn) i=l 

where the last step follows because adding a constant I'\, to every term in the sum 
will shift the maximum by nl'\" but will not affect in any way the value x achieving 
that maximum. 

We write an initial logarithmic metric log PYtI Xt (Yilxi) table without added const.ant. 
for the channel as: 

Adding 2 to every metric in the table gives us a non-negative metric that is easier 
to work with for decoding: 

(e) We apply the Viterbi decoder to the trellis for this sequence as illustrated in the 
picture below: 

8 




State Input 
01 01[II] <: 

[]]J 


C,C, B,A, C,A, B,C, A,B, B,A. 

Retracing our steps back through the trellis, we obtain the sequence 

11 00 10 01 00 00 

resulting in the maximum likelihood information sequence 

1 1 0 0 (0 0) 

where the last two digits are zero-stuffing and thus not part of the information 
sequence. Note that the two metric values underlined in the trellis correspond to 
ties between paths of equal metric, where the winning path was selected arbitrarily 
among the two incoming paths. Since none of these ties are to be found along the 
overall winning path, the maximum likelihood solution above is unique. 

~\(\es's c.oMw.enV~ 

An easy question that required the students to repeat operations that were 
treated extensively in examples during the lecture. 
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Question 4 

(a) 	The product BeTe of the coherence bandwidth Be with the coherence time Te deter­
mines whether the channel is underspread or overspread. 

The coherence bandwidth Be is simply the inverse of the delay spread T d , i.e., 

1 

100 x 10-9 = lOMHz. 


The coherence time Te is the inverse of the Doppler spread Bd, which, in Jakes' 
model, is equal to 2/m. 1 

We have 
- vicfm­

c 

where v = 10 km/h = 10/3.6 = 2.78 m/s is the velocity, c is the speed of light, and 
Ie is the carrier frequency, i.e., 

1 1 c 3 X 108 

Te = Bd = 21m = 2vl = 2 x 2.78 x 5 X 109 = 10.8 ms.e 

Thus, 

BeTe 107 X 1.08 X 10-2 1.08 X 105 > > 1 


and therefore the channel is unde rsp read. 

(b) 	The codeword duration of 3.5 /-LS is far smaller than the coherence time of = 10.8 
IDS, thus the channel is fiat in time (not selective.) 

The signal bandwidth of 20 MHz is larger than the coherence bandwidth of Be = 10 
MHz, thus the channel is selective in frequency. 

(c) 	 (i) In a multipath wireless channel model, the signal emitted from the transmit 
antenna travels along several paths to the destination antenna. Along each of 
these paths, the signal is reflected by one or more scatterers. The scatterers 

rise to paths of different lengths and hence taps in the discrete channel 
model of different gains and phases. Correlated scatterers result in paths of 
correlated lengths and hence in taps of correlated gains and phases. In order 
for the channel taps to be independent, the scatterers need to be uncorrelated. 

(ii) 	The block diagram of OFDM is drawn below, 

1Due to an inconsistency on this point in a previous exam crib, a Doppler spread of Bd = f Tn will 
also be accepted as a correct assumption and it does not change the solution. 
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IFFT 
X, 

Channel 
Cyclic 

Prefix 


Removal 
Y, 

FFT 


where X t is the signal vector in the "time domain"! X I is the signal vector 
transformed into the "frequency domain" via application of an inverse fast 
Fourier transform (IFFT). The last elements of the transformed block are re­
peated and appended to the beginning of the block as a "cyclic prefix" to ensure 
that the convolution applied by the channel is equivalent to a cyclic convolution 
in the frequency domain, equivalent to a multiplication in the time domain. 
The signal is then serialised and forwarded to a frequency-selective channel, 
which is modelled as a combination of a linear filter followed by an Additive 
White Gaussian Noise (AWGN) phase. At the receiver, the cyclic prefix is 
removed, and an FFT is performed to recover the signal in the time domain. 

The result of these operations is to convert a frequency-selective channel into 

E[HiH;l = L L E[heh:nle-j27r~ e+ : 

parallel fiat channels, thereby replacing a channel with memory by parallel 
channels without memory. 

(iii) We have, for k i= i and k - i < n, 

Np-l Np-l 
j27rk

e=o m=O 

Np-l 

- L E[hehelej27ri(kn-i) 

where the first step follows from the independence of the channel taps and from 
the fact that they have zero mean and the second step follows from the fact 
that they all have equal variance 0-2 . In the last step, the expression in the 
denominator is non-zero because 0 < 27rk~1 < 27r and the expression in the 
numerator is zero for all k i= i if and only if Np is an integer multiple of n. 
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(iv) 	 .tne linear code stated has mOCK tengtn ( and rate ft 4/7. If OFDM is 
used with DFT length n equal to the code block length, then, referring to the 
previous part, we are now in the case where Np = n and thus Np is an integer 
multiple of n and the DFT coefficients HI, . .. , Hn are uncorrelated. In this 
case, the diversity achieved is simply the diversity of the code, which is equal 
to its minimum distance, or minimum Hamming weight. 
The minimum distance of the code, and hence the diversity order achieved, is 
dmin = 3. This can be shown through the following argument: the generator 
matrix is systematic, so any combination of 3 or more of its rows will have 
weight at least 3 because the systematic part will have weight at least 3; any 
combination of 2 rows in the generator matrix has weight at least 3 as well, 
because its systematic part has weight 2 and the parity-check part of two rows 
would have to be identical to achieve overall weight 2, which is not the case for 
any 2 rows; finally, there are 3 rows of weight 3 and thus the code has at least 
3 codewords of weight 3. 

(v) For Np 2, the DFT coefficients are correlated and this will reduce the diver­
sity order of the system. " 
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