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ENGINEERING TRlPOS PART lIB 2012 

Module 4F7 

DIGITAL FILTERS AND SPECTRUM ESTIMATION 

Solution to Question 1 

a) The M-tap LMS algorithm for linear prediction is 

hen + 1) = hen) + J.L(u(n) - h(n)T u(n l))u(n - 1) 

whereu(n 1)=[u(n-l),u(n-2), ... ,u(n M)F. 
b-i) Take the expectation of both sides to get 

1 L-1 

E {hen + Ln E{h(n)} +Wi L: (E{d(n + l)u(n + l)} E{u(n+l)u(n+l)Th(n)}) 
1=0 

1 L-1 

= E {hen)} + J.L L L: (p E {u(n + l)u(n + lfh(n)}) 
1=0 

1 L-1 

;:::: E {hen)} + J.L L L: (p E {u(n + l)u(n + l)T} E {h(n)}) 
1=0 

1 L-1 

= E{h(n)}+J.LL L:(p RE{h(nn) 
1=0 

= (I - J.LR) E{h(n)} + J.Lp 

where E {den + l)u(n + In = p and E {u(n + l)u(n + I)T} = R. 
Convergence in mean provided 0 < J.L < 2/Ama.x(R) 
We see that the block performs an average of the update terms which should 

be closer to their mean value than when L 1 and thus oscillation about the 
converged value should be less. Also, the independence assumption is a more 
realistic approximation for the block LMS. 

b-ii) It is clear that the block LMS has the same limit point for all L. Call 
this h. 

h = (1 J.LR) h + tiP 

h = R- 1p 

R = E{u(n)u(n?} 

= E {(x(n) + v(n))(x(n) + v(n))T} 

= E {x(n)x(nf + x(n)v(n)T + v(n)x(n)T + v(n)v(n)T} 

= Rx +(T~I 
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where I is the Mx M identity matrix, x(n) [x(n), x(n-l), ... , x(n-M+1)jT, 
v(n) = [v(n), v(n - 1), ... , v(n M + 1)jT. 

lim 	E{h(n)} = (Ra: + u~)-lE{u(n l)u(n)} 
n-HlO 

and 

p 	 E{u(n -1)u(n)} = E{(x(n - 1) +v(n -1))(x(n) + v(n))} 

E{(x(n l)x(n)} 

Examiner's comments: With the exception of parts (aJ and (c-iiJ, the ques­
tion was answered well. It was a disappointment to see that candidates were 
unable to formulate the prediction problem using LMS in part (aJ. A simple 
diagram would have helped. Also, many candidates failed to realise, as the ques­
tion clearly states, that signal x(nJ is not measured directly and hence cannot be 
used as the desired response. 

Solution to Question 2 

£J..a) E {(~ y(i) - x)2} = E {(~ L~;l v(i))2} 
2 

n 

b) 

1 n-l
.T(n) = -yen) + - 1)

n n 

1 (y(n) _ .T(n - 1)) + .T(n - 1) 
'TI. 

c) Let e(n) = .T(n) x. Thus 

.T(n) - x K(n) (y(n) x + x - .T(n - 1)) + .T(n 1) - x 

e(n) = K(n) (v(n) e(n 1)) + e(n 1) 

Square it and take the expectation to get: 

e(n)2 K(n)2 (v(n) - e(n - 1))2 + e(n _ 1)2 

+ 2K(n) (v(n) - e(n -1)) e(n -1) 

E {e(n)2} = K(n)2E {v(n)2 + e(n - 1)2 2v(n)e(n I)} + E {e(n _ 1)2} 

+ 2K(n)E {even) e(n 1)) e(n - In 

K(n)2 (u~ + E {e(n 1)2}) + E {e(n - 1)2} 

2K(n)E {e(n - 1)2} 

The last line follows from the stated assumption on {v(n)}. Let u(n)2 
E{e(n)2}. 
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d) Differentiating the right-hand side with respect to K(n) and equating to 
o to solve for K(n) yields: 

K(n) 

Examiner's comments; A well answered question on the whole. It was noted 
that more than a few candidates were unable to answer part (b). Although this 
part was only worth 5%, it was very surprising for the examiner. 

Solution to Question 3 

a) The AR model is an all pole IIR filter driven by white noise. The transfer 
function is 

H(z) 

where: 
p 

A(z) 1 + L 
i=l 

Assume that the filter is stable, Le. the poles (solutions of A(z) = 0) all lie 
within the unit circle. Otherwise the output wont be wide sense stationary. 
The power spectrum of the output is 

The spectrum can be factored as 

Cf Cf 

A(z) = 

The spectrum can be manipulated by choosing P, Cf, subject to Idil < 1. 
The poles model well the peaks in the spectrum - sharper peaks implies poles 
closer to the unit circle 

b) The autocorrelation function Rxx[r] for the output Xn of the ARMA 
model is: 

Rxx[rJ = E[xnxn+rJ. 

Note that Rxx[rJ = Rxx[-r]. 
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Substituting the difference equation for X n +r , r :;::: 0, gives: 

Rxx[r] 

E [xn { - t ai Xn+r-i + ~Wn+r}] 

p 

= - 2: ai E[xnXn+r-iJ + ~ E[xnwn+r] 
i=1 

p 

= - 2: ai Rxx[r - i] + ~20(r) 
;=1 

where 0(0) = I, o(r) 0 for r f O. 
c) In matrix form: 

Rxx[O] Rxx[-I] Rxx[-P] 

~xx[l] Rxx[O] Rxx[I Pj 

[ Rxx[P] Rxx[P-I] Rxx[O] 

Consider the matrix equation given by the second row onwards: 

Rxx[O] Rxx[-I] Rxx[I P] 
Rxx[I] Rxx[O] Rxx[2 P] 

[ Rxx[P 1] Rxx[P- 2] Rxx[O] 

al ] [RXX[I]]a2 Rxx[2] 
· .· .· .[ 

ap Rxx[P] 

Solve for ai. Then, use the first row of the original matrix equation to solve for 
~: 

[ Rxx[O] Rxx[-l] 

d) The autocorrelation values of a particular signal are estimated to be 

Rxx[O] 4.8, Rxx[l] -1.2, Rxx[2] 1.8 
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This gives 

2 

There will be two peaks in the spectrum at w = 0 and w = 7l" 

Examiner's comments: The most popular question. It was disappointing 
to see that most of the discussions for part (a) were poorly structured and in­
complete while it should have been an easy mark earner. Sketching the power 
spectrum in part (e) was a stumbling block for many while all that was needed 
was simple reasoning to indicate the presence of two peaks and their locations. 

Solution to Question 4 

a) 

E {YnYn+d 	= E {(xn + vn ) (xn+k + Vn+k)} 

= E {xnxn+d + E {VnVn+k} + crossterms 

Note that the cross terms have zero expectation. So 

Ryy[k] = Rxx[k] + Rvv[k] 

b) 

c) 

Sv(ejW 
) = Ibo + bl (cosw - j sinw)1 2 

2 = b6 + bi cos w + 2bIbO cosw + bi sin2 w 

= b6 + bi + 2bIbO cosw 
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We see that b1bo = 1, bg + by = 2 or 

or bo + b1 =-2 

bg + 1 2bo, or bg + 1 = -2bo 
bo = 1, b1 1 or bo = -1, b1 -1 

Rvv[O] = 2, Rvv[l] = 1, Rvv[2] = 0, ... 

d) We can estimate Rxx using the given Ryy and calculated Rvv 

Rxx[O] = 2.74, Rxx[l] = -0.46, Rxx[2] 1.41, 

Now use the Yule-Walker equations 

aa~ ] = [2.74 -0.46 ] -1 [ -0.46 ] ~ [ 1/12 ]
[ ~ -0.46 2.74 1.41 ~ -1/2 ' 

2 0.46 1.41 2 
(j =2.74 - - -2- ~ 

Examiner's romments: It was indeed pleasing to see that this entire question 
was answered well by most. 
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