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1. Mixture Models and ML training 

(a) Z must satisfy 

Z Jexp(a'f(x»dx 

this ensures that the PDF integrates to 1. [lO%] 
(b) If f(x) has the form given then considering only the exponential terms 
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The value of Z will consist of both the standard normalisation term and the final 
quadratic term from the Gaussian, hence 

[25%J 
(c)(i) The variance for each component is the same: 

1 
2>' 

The mean is component specific 

Using the expression earlier 

Zm = _--'-:--::--:-:--,-­
exp 

[15%] 

(c)(ii) The auxiliary function for the general mixture model may be written as 
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Differentiating ",1th respect to am and equating to zero yields 

o 

Yielding 

[30%] 

(c) (iii) Differentiating the auxiliary function with respect to .,\ and equating to zero 
yields 

",111 show that the two sets of parameters are functions of each other. This compli­
cates the estimation process (for standard Gaussians this is not the case). Need to 
substitute the estimation in the previous so 

v" 

which yields 

1 1 


2). 


[20%] 

This question looked at members of the exponential family, their relationship to Gaussian distri ­

butions and mixture model training. This was a popular question, and generally well answered. 

However it was disappointing that so few candidates could derive the update formulae for all the 

model parameters. 
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2. Bayes' Decision Rule and Probability of Error 

(a) Bayes' decision rule for a two class problem is 

'd { Class WI if P(wllx) > P(w2Ix);DeCI e .
Class W2 OtherwIse 

[10%] 

(b) For a 2-class problem the decision rule will split the observation space into two 

regions 


• R I : observation classified as WI 

• R 2: observation classified as W2 

P(error) P(x E R 2,WI) + P(x E R I ,W2) 

P(x E R2IwI)P(wd + P(x E R l lw2)P(W2) 

{ P(XIWI)P(WI)dx + { P(XIW2)P(W2)dxin2 inl 
[15%] 

(c) (i) A point that lies on the decision boundary satisfies 

Substituting in the expressions for the covariance and priors yields 

, 1, , 1, 
/LIX - "2/LI/LI = /L2 X - "2/L2/L2 

Yielding the equation of a straight-line 

(/LI - /L2)' x = ~ (/L~/LI - /L;/L2) 

[25%] 
(c) (ii) The decision boundary in (c) (i) defines the two regions. For this form of 

distribution the posterior will only be a function of the perpendicular distance from 

the decision boundary. Projecting the distribution for class along this line 


where K2 = 11/L2 - /L111 2. Perpendicular to this direction will just integrate out to 1 
for all positions. 


The decision boundary is the projection of the point half way between the means 

onto this line. This projection point is 
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Considering the first element of the probability of error 

Offsetting the mean of the integral to 0 yields the required form 

1 {o:J
"2J Ji\[(x;O;l)dx 

a 

where a is now 

a 2~ (1-'2 - 1-'1 )'(1-'1 + 1-'2) 

1 ' , 
2K (1-'1 1-'2)'(1-'1 1-'2) 

~ V(1-'1 - 1-'2)'(1-'1 - 1-'2) 

Since the probability of error for the second expression vvill be the same this is the 
value of n. [30%] 

(d) In practice classifiers do not satisfy the conditions for generative models to be 
optimal - mention 

• finite training scts 

• correct form of PDFs 

• priors are correct 
(20%J 

This questions examined the students' knowledge of expected error rates. The question was 
straight-forward and was attempted by all the candidates. The main problem encountered that 
that rather than projecting onto the line between the two means, the average mean vector was used. 
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3. Training Logistic Regression and Regularisation 

(a) The log-probability of the data from class WI can be written as 

n 

C(b) = L (Yilog(P(Wllxi, b)) + (1 - Yi) 10g(P(w2Ixi, b)) 
i=1 

n 

L (Yi 10g(P(Wllx i, b)) + (1 - Yi) 10g(1 P(WtlXi' b)) 
i=1 

This will yield a linear decision boundaries passing through the origin in the space 
defined by 4>(x).. [15%j 

(a) (ii) Differentiating 

exp(-b'4>(x)) 
= (1 + exp( _b'4>(x)))24>(x) 

P(wllb, x)(l P(wtlb, x))4>(x) 

Thus 
n 

L4>(Xi) (Yi(l- P(Wllb, Xi)) - (1- Yi)P(Wllb,Xi)) 
i=1 

n 

L 4>(Xi) (Yi - P(Wll b ,Xi)) 
i=1 

This can be used in a gradient style approach where 

[30%] 

(b) (i) The posteriors for WI each of the points are given by 

1 1 

1 + exp(-a)' 1 + 
1 1 


1+ , 1 + exp(+a) 

Two approaches can be adopted, either substitute into the likelihood, or the deriva­
tive. 

Simplest is to substitute into the original likelihood yields 

C(a) log (1 + ex~(-a)) + log C+ e~p(a)) + log (1 :x:~M~a)) log (1 :x:~;~a)) 
2 log (1 + ex~(-a)) + 2 log (1 + e~p(a) ) 
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Need to maximise this expression - differentiate and equate to zero 

2 ( exp(-a) ) _ 2 ( exp(a) ) - 0 
1 + exp(-a) 1 + exp(a) ­

Thus 

a 0 

This does not yield a reasonable classifier, all points have the same posterior. [25%] 

(b)(ii) For the form of transformation specified only the second element can discrim­
inate, s seen in the SVM lectures. Simplest solution is to set 

The posteriors for class 1 are then for the data for class 1 and then class 2 

1 1 
1 + exp( -0')' 1 + exp(a) 

The IJU!l1t::. ale iLOW correctly elassified. Note the requirement Q > 0 Othef1Vise it 
classifies it exactly incorrectly! [30%] 

A question based on training a logistic regression classifier and then applying a kernel on the 
feature-space. Though a popular question and reasonably well done, it was disappointing that 
more candidates did not notice that the points selected were for XOR and the feature-space cho­
sen was described in lectures for solving this problem. 
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4. Non-Linear Regression and Gaussian Processes 

(a) By inspection this form of interpolation is a non-linear function of the observa­
tions. The form given is exponential in nature which can yield a feature space of 
the same dimension as the number of observations. CJ2 determines how smooth the 
regression will be. [20%] 

(b) The regression process can be written as 

y =.pw + CJ~I 
By inspection the mean is zero as both wand the noise are zero mean. Following 
the notation from lectures 

where 

.p [<Pl\Xl) ::: <PH;Xd] 

<Pl (xn) ... <P H( xn) 

Expanding out this representation yields for a particular element 

j) 

[35%] 
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The alternative approach is to compute this directly 

j) 

[35%] 
(d) Though the number of weights increases to infinity, the regression process becomes 
a function of the model parameters. Thus the effective number of free parameters is 
determined by the number of observations. [10%] 

Those candidates that attempted this question did reasonably well. The question was based on 

Gaussian processes. As in previous years this topic was unpopular with the students. 
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5. Classification and Regression Trees 

(a)(i) The general attributes that should be satisfied by a node impurity function, 

¢(), are 


• 	¢() is a maximum when P(Wi) = 1/K for all i 

• 	¢O is at a minimum when P(Wi) = 1 and P(Wj) = O,j =1= i. 

• 	 It is symmetric function (Le. the order of the class probabilities doesn't matter). 
[20%J 

(a)(ii) P(Wi) should be calculated as the fraction of the observations belonging to 
class Wi associated with that node. 

The Gini impurity measure may be written as 

"L.P(Wi)P(Wj) - "L.P(Wi) "L.P(Wj) 
ih 	 #i 

K

"L. P(wi)(l - P(Wi)) 

K 

1 "L. (P(Wi))2 
i=I 

This function satisfies all the attributes. Using the second form of the Gini impurity 

measure 


• 	 The function is a maximum when all values are equal (various acceptable proof 
including 

This is greater than 2X2 so the impurity measure will be less.) 

• 	 The value is at a minimum when P(Wi) 1 (all other classes zero). 

• 	 By inspection it will be symmetric from the second form. 
[25%] 

(b) (i) The two possible splits are for attribute one and attribute 2 

• 	 Attribute 1: 1 2/5 WlJ 0 2/3 WI 

• 	 Attribute 2: 1 1/5 Wi, 0 3/3 Wi 

Attribute 2 is clearly better as both splits are more pure. The actual calculation of 

the change in impurity function is 


1 3 
5 lO 

[20%] 
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(b)(ii) Two of the feature vectors are identical. These cannot be split using this data. 
All other symbols may be perfectly classified. Thus the lowest impurity measure is 
given by 

1 

8 

as all other nodes will be correct. [15%] 

(c) Since misclassification costs are now considered the appropriate criterion would 
be the misclassification criterion 

1 - m~x {P(Wi)}, 

The cost function would then be altered so that the cost is twice this when the 
maximum is class (;;1 [20%] 

This question examined the candidates knowledge of decision trees and the Cini impurity function. 
A very straightforward question and very well done by the candidates that attempted the question. 
This was the least popular question on the paper. 
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